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We shall be concerned with the set X of functions ¢ defined on the 
non-negative integers 'll?:_ 0 and with values in 'fl. The ring structure on 
7l enabl~s us to make X into a ring: 

(¢ + 1/J)(n) = ¢(n) + 1/J(n) and (¢7/J)(n) = ¢(n)1/J(n); 

the constant function with value 1 is the identity of X. 
Such functions arise in every part of mathematics. Their importance 

stems from the fact that if a given situation gives rise to such a function, 
then its properties often yield structural information about the original 
mathematical situation. 

Let me pick three examples and since I am an algebraist they are all 
drawn from algebra. 
(1) Let R be a commutative noetherian local ring. "Noetherian" means 
that R satisfies the maximal condition on ideals and "local" means that 
R has exactly one maximal ideal, call it I. For example, if p is a prime 
number, the subring 'll(P) of the rational numbers ~ consisting of all ratios 
of integers ajb, with b prime top, is such a ring, the maximal ideal being 

p'll(p)• 

By the maximality of I, R/ I= K is a field and by the noetherian 
property, each Ir is finitely generated as an ideal. Hence each r I r+ l is 
a finite dimensional vector space over K. Then 

is a function in X . 

* Written vel"!lion of invited lecture delivered to the Singapore Mathematical Society and the 
Department of Mathematics, National Univel"!lity of Singapore, on 3 April1989. Professor Gru
enberg was visiting the National Univel"!lity of Singapore as External Examiner in Mathematics. 
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(2) Let G be a group with a given finite set of generators S. Then every 
element g in G can be expressed in the form 

where si E S and Ei = ±1. We call n the length of this expression. Of 
course, our element g may have many different expressions, so n is not 
determined by g. For each n E '/1,.?. 0 , let G ( n) be the set of all g in G that 
have an expression of length~ n. (G(O) = {1}.) Since Sis finite, G(n) is 
finite and we write l(n) for the cardinality of G(n). Then l is a function 
in X. 

(3) Let K be a field, G a finite group and A a finitely generated KG
module. We choose a finitely generated projective resolution of A over 
KG: 

This means that each Pi is a finitely generated projective KG-module (a 
projective module is a direct summand of a free module) and the displayed 
sequence is an exact sequence of modules (meaning that the image of each 
incoming arrow is the kernel of the outgoing arrow). 

Since G is finite, every finitely generated KG-module is a finite di
mensional vector space over K. Hence 

is a function in X . 

We shall reexamine all these examples later. But now we turn to 
general observations about our ring X. The simplest functions that live 
in X are the polynomially defined ones. We say</> is polynomially defined 
if there is a polynomial f(X) E ~[X] so that </>(n) = f(n) for all n ~ 0. 
Note that /(X) need not have integer coefficients: for example, with k 

any positive integer, 

(
X) = X( X- 1) ···(X- k + 1) 
k k! 

takes only integral values when X is made integral. If P denotes the set 
of all polynomially defined functions, then P is a subring of X and we 
now claim that every function in P can be constructed from the above 
binomial polynomials: 

2 



Proposition 1. The polynomial(~) fork~ 0 (here (~) means 1} form 
a ~-basis of ~[X], and they additively generate (a group isomorphic to) 
P. 

Proof. The ~-basis property is immediate by an induction on degree if 
we note that 

where 0 g (the degree of g) is strictly smaller than k. 
We prove the second assertion also by induction on degree. So let 

</> in P be given by the polynomial f (X) and (using the first part of the 
Proposition) suppose 

where ak E ~· We need to show each ak is an integer. 
For any polynomial g( X), let 

og(X) = g(X + 1) - g(X). 

Then oG) = (k:J and so 

of (X) = t ak ( k ~ 1) . 
k = l 

Now 8 f has smaller degree than f and is still integral valued at all n ~ 0. 
So by induction each of a 1 , ••• , ar is in 'll. Since 

ao = f(X) - t ak ( ~) 
k=l 

and the right hand side takes only integral values, so a0 is also in 'll. 0 

Polynomially defined functions occur rarely. A slight generalization 
leads to functions that appear frequently. Let q be a positive integer. 
We say </> in X is polynomial on residue classes mod q (PORC mod q) if 
there exist polynomials / 0 (X), ... , fq-dX) in ~[X] such that, for every 
0 ~ r < q and n E 'll, 

</>(nq + r) = fr (n). 
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Of course, every integer can be written in the form nq + r. Note also that 
if l/J E P, then l/J is PORC mod 1. 

We say two functions l/J, t/J are ultimately equal if there exists an integer 
N so that n ~ N implies l/J(n) = .,P(n) and we write ljJ"' t/J. The function 
ljJ is ultimately PORC mod q if there exists a PORC mod q function t/J so 

that ljJ "' t/J . 
. To every ljJ in X we may attach a formal power series 

P(l/J, X) = 2: l/J(n)Xn. 
n2':0 

This is often called the Poincare series for l/J. Note that ljJ "' t/J if, and 
only if, 

P ( l/J, X) - P ( t/J, X) E 7l [X]. 

The Poincare series of PORC functions have a particularly nice form: 

Proposition 2. The function ljJ is ultimately PORC mod q if, and only 
if, 

P("" X) - g(X) 
'{J, - (1- Xq)t' 

where g(X) E 7l[X] and tis a positive integer. 

Proof. Assume first that ljJ "' t/J with t/J PORC mod q and given by the 
polynomials / 0 , ••• , fq _ 1 • It will suffice to show that P ( t/J, X) has the 
required form. Now 

P(.,P, X)= 2: t/J(m)Xm 
m2':0 

q-1 

= 2: 2: .,P(nq + r)Xnq+r 
r=O n2':0 

= qf xr ( 2: fr(n)xnq ). 
r=O n2':0 

Hence it will suffice to show 2: fr (n)Xnq has the required form, for every 
n2':0 

r. 
By Proposition 1, 
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with each ai E 7l and d = 0 fr. So we are reduced to proving that, for each 
i, E (~)xnq has the required form. We have 
n~O 

and 

Thus 

(-s) = (-1ts(s+1)···(s+n-1) 
n n! 

= ( _ 1)n (n + S -1)! 
n!(s- 1)! 

= (-1)n(n+s-1)· 
s-1 

1 = ""' (n + s - 1) xkn 
(1 - Xk )• L- s - 1 . 

n~O 

Using also that (~) = 0 if n < i, we deduce 

L (7)xnq = L (m:i)rq+iq 
n~O m~O 

as required. 

Assume now conversely that 

g(X) 
P( 4>, X) = ( X ) . 1- q t 

By (1) 

whence the coefficient function is PORC mod q with polynomials 

(X +t -1) ' 0, 0, ... ' 0. 
t-1 
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If f(X) is a polynomial with integer coefficients of degree < q, say 

then 

q-1 

f(X) = :L b,X', 
i=O 

f(X) = ~""' (n + t- 1) b-Xqn+i 
(1- Xq)t L- L- t- 1 ' 

i=O n;::>:O 

and so this is the Poincare series of a function PORC mod q with poly
nomials b, (x:~; 1 ), 0 ~ i < q. Now write our given polynomial g(X) 
as 

g(X) = :L g, (X)(1- Xq)', 
i;::>: 0 

where og, < q. (This is really a finite sum.) Then 

(2) 

The second term on the right hand side of (2) is PORC mod q, as we proved 
above, and hence the left hand side is ultimately PORC modq. D 

Note that the integer t in Proposition 2 can be taken to be 1 + d, 
where d = max{o/0 , 

0
/ 1 , ••• , 

0 /q- 1 }. This follows from our proof. 

Functions that are ultimately PORC grow only polynomially. To be 
precise, let us define <P to be of polynomial growth c ~ 0 if there exists a 
positive real number a and a positive integer N so that n ~ N implies 
I <P ( n) I ~ an c-

1 and c is the smallest such integer. 

Proposition 3. If <P is ultimately PORC mod q, given by / 0 , ••• , fq- 1 

and d is the maximum of the degrees of / 0 , ••• , fq- 1 , then <P is of polyno
mial growth d + 1. 
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Proof. Suppose¢> becomes PORC mod qat N. IT n 2:: Nand n = kq + r, 
then 

lc/>(n) I = lfr (k) I ~ ( .t lai 1) kd•, 
•=0 

dr dr 

where fr (X) = I:.: ai Xi. IT I:.: lai I =An define a= max(Ao, ... , Aq- !). 
i=O i=O 

Then 1¢>(n)l ~and for all n 2:: N. 
Now assume 11> ( n) I ~ an c-

1 for all n 2:: N and let d be the degree of 

fr· Then 
lfr (k) I = l¢>(kq + r) I ~ a(kq + r)c- 1 

for all k 2:: K say. IT g(X) is the polynomial a(qX + r)c- 1
, then ag = c -1 

and lfr (k) I ~ g(k) for all k 2:: K. This implies 0/r ~ og, i.e., d ~ c-1. 0 

The converse of Proposition 3 is false. For example, let 

¢>( n) = { n ~ n ~ not ~ prime 
0 if n IS a prrme. 

Then ¢>(n) ~ n 2
-

1 so that ¢> has polynomial growth 2. But if ¢> were 

PORC mod q above, say, N with polynomials / 0 , ••• , fq- 1 , then qk+r 2:: N 
implies 

fr (k) = ¢>(qk + r) 
and the right hand side is 0 whenever qk + r is a prime. By Dirichlet's 

famous theorem, 'llq + r contains infinitely many primes and so fr (X) has 
infinitely many roots, an impossibility. 

Let us now return to our three examples. 
(1) Recall that R has unique maximal ideal I and our function is ¢>(n) = 
dimK r I r+ 1

• The basic theorem here is that the associated Poincare 
senes 1s 

g(X) 
P(¢>,X) = (1- X)t' 

where, by cancellation, we may assume 1- X is not a factor of g(X). 
Then t is the Krull dimension of the local ring R (this means that t is 
the supremum of the lengths of all chains of prime ideals in R). Thus ¢> is 
ultimately polynomially defined and the polynomial in question is called 
the Hilbert polynomial of R. 
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If R = 'll(v), P(¢, X) = 
1
_!x and the Hilbert polynomial is 1. 

A good account of this theory is in [1], Chapter 11. 

(2) In this example G = (S) with S finite and l(n) is the number of 
elements in the group G that can be written as an S-word of length ::::; n. 
An important theorem of Gromov [6] asserts that l has polynomial growth 
if, and only if, G has a nilpotent subgroup of finite index. Very recently 
Grunewald has shown that if l is of polynomial growth it need not be 
ultimately PORC. (There is a beautiful proof of Gromov's theorem by 
methods of non-standard analysis, due to van den Dries and Wilkie [4].) 

Grunewald's example is a type of Heisenberg group. Let Hk (the k-th 
Heisenberg group) be the group with generators x1 , ••• , xk, Y1, ... , Yki z 
subject to the relations 

[xi,Yi] = z 

[xi,Y;] = 1 

is central, 

if i-! i, 
the x's commute and the y's commute. 

TakeS= {x1 , ••• ,xk,y1 , ••• ,yd. Then H1 is the free nilpotent group of 
rank 2 and class 2 and here it is known that 

This was conjectured by R. Bodeker and proved independently by M. 
Shapiro and B. Weber. However, Grunewald has proved that l for H 2 and 
S is not ultimately PORC, nor even rational. 

(3) For our KG-module A we choose a projective resolution 

· · · -+ P1 -+ Po -+ A -+ 0 

with the property that for each i, the image of Pi in Pi- I contains no pro
jective direct summand. Such a resolution always exists and is, in a sense, 
the tightest resolution possible. It is also unique (to within isomorphism). 
The claim now is that n ~--+ dimK Pn is ultimately PORC. 

This result depends on two theorems: 
(i) ExtKa (K, K) is a graded noetherian K-algebra (Evens [5]) and for 

any KG-module M, ExtKa ( K, M) is a finitely generated graded mod
ule over ExtKa (K, K); 
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(ii) if V is a finitely generated graded module over a graded commutative 
noetherian K-algebra A, then n ~---+ dimK Vn is ultimately PORC. 
This r.esult is nowadays usually known as the Hilbert-Serre theorem. 
A special case of it lies behind the theorem on local rings in example 
(1). Cf [1]. 

Putting (i) and (ii) together shows the function 

n ~---+ dimK Ext~0 (K, M) 

is ultimately PORC, whence so is 

for any KG-modules A, B (because 

ExtKc (A, B) ~ ExtKc (K, HomK (A, B))). 

Now a relatively elementary argument shows 

dimK Pn = L rs dimK Ext~G (A, S), 
s 

where S runs through all simple KG-modules and each rs E 'll>o· The 
required conclusion that n ~---+ dimPn is ultimately PORC follows because 
the set of functions ultimately PORC is closed under addition (in fact, it 
is a subring of X). 

These ideas go back to Swan [8]. A good introduction to this material 
is Carlson's little book [3]. 

In preparing the written version of this lecture I have been helped by 
a letter from Fritz Grunewald and a comment by Aidan Schofield. 

In addition to the literature already cited, I should mention the com
prehensive survey by Babenko [2] of growth functions in algebra and al
gebraic topology. 
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