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This paper will discuss algorithms and effective computability, and 
how these concepts relate to Turing Machines and Diophantine sets and 
relations. The link between the two will also be examined followed by an 
account of several important diophantine relations. 

§2. Recursiveness and computability 

Recursive functions can be informally thought of as functions which 
are effectively computable. Simply put an effectively computable function, 
I, is one for which there exists an effective procedure (an algorithm) which 
calculates the value of I ( x). An effectively computable function must 
satisfy the following conditions. 

(i) IT the procedure is supplied with a value x that is in the domain of 
I, then after a finite number of steps the procedure must stop and 
produce a value for l(x). 

(ii) IT the procedure is supplied with a value that is not in the domain 
of I then the procedure might carry on never halting, or it might 
get stuck at some point. Most -importantly it must never pretend to 
produce a value l(x). 
This procedure could then be visualised in modern day terms as a 

digital computer executing a program to determine the value of an element 
in the range of a function. Included too in the definition of an effective 
procedure are several restrictions that must never be imposed. 
(i) There must be no limit imposed on the size of the input although it 

must be a natural number. 
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(ii) Although after a certain finite number of steps the procedure must 
stop and produce a value for f(z), there is no restriction imposed on 
the number of such steps. 

(iii) There must be no restriction imposed on the amount of memory space 
the procedure utilises in calculating the value of J(;c). 
These restrictions become significant when we compare the concept of 

effective computability with that of practical computability. For example 
a function might be deemed practically computable if it could be evaluated 
by a digital .computer in 5 hours for an effectively computable function, no 
bound is imposed on the time taken to calculate it as long as it is finite. 

g3. Turing machines 

A way to defining recursiveness was formulated by Alan Turing in 
1936 in terms of imaginary computing machines known as Turing ma
chines. 

Turing machines are basically computing machines with rudimentary 
structures. We can start by imagining such machines to consist of a box 
with a long length of tape going through it. This tape is divided into 
squares, and on each square is either a 0 or 1. This tape is infinite in both 
directions, however only a finite number of squares may contain ones. This 
tape initially contains the input of the machine and ultimately the output 
of the machine. At intermediate stages it serves as working space for the 
calculation. 

The workings of a Turing machine may be defined as follows. It is 
only capable of examining one square at a time, and the box of the Turing 
machine consists of a finite list of instructions ( q1 , q2 ... q,.). Each single 
instruction indicates 2 possible courses of action, one to be followed if the 
square being scanned contains a 1, the other if the square contains a 0. In 
either case a course of action consists of three steps. Firstly, the square is 
scanned and then a new symbol (either a 1 or 0) is written on the same 
square. Secondly, the machine moves the tape either a square to the left 
or to the right. Thirdly, a new instruction is specified. According to this 
description a Turing machine might be defined as a function M. 

Definition: 
A Turing machine is a function M such that for some natural number 

n, 
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domain of M ~ {0, l. .. n} x {0, 1} 

range of M ~ {0,1} x {L,R} x {O,l. .. n} 

Let us take for example M(5,0) = (1,R, 7). This means that Turing 
machine M upon reading a square which contains a 0 while executing 
instruction 5 will write a new symbol 1 on that square and then move the 
tape one square to the right. Then the machine will move on to execute 
instruction 7. 

Finally we are able to define recursiveness in terms of such a machine. 
Let x be a string of 1s. Then [x1 0x2 0 ... 0x~:] would be k strings of 1s 
separated by Os. Let this be the input/output format of machine M. A 
function is then said to be recursive if there exists a machine M such that 
whenever we start M at instruction q0 scanning the leftmost symbol of 
[ x1 Ox2 0 ... 0~;] then if f ( x1 ... x~;) is defined, M will eventually halt scanning 
the leftmost symbol of the output format [/(x1 ••• x~:)]. If /(x1 ••• x~;) is 
undefined then M will never halt. 

§4. Alternative ways of looking at Turing machines 

Besides being thought of as a function, a Turing machine could also 
be thought as a table of quintuples (5-tuples) in the form (i, a, {3, x, i) 
with a being the current symbol and {3 the symbol (-possibly equal to a) 
to replace a, x being the direction the tape is going to take and i and i 
representing the current and future instruction. We can then define a k
ary relation, P ,as follows: Turing machine T eventually halts if and only if 
< x1 ••• x~; >E P. Next we can code configurations ofT by < l, n, r >where 
1 is the natural number whose binary representation is actually the string 
of numbers to the left of the square being scanned, n is the number of the 
instruction being executed and r is the natural number which encodes the 
string of numbers to the right of and including the number being scanned 
(read from right to left). 

Next let the set SQ be the set of all < l, n, r, l', n', r' > such that a 
quintuple Q from the table of machine T acts on < l, n, r > to produce 
< l', n', r' > (the next configuration). We see then that if Q is in the form: 
(i, a, {3, x, i) 

then if x = R then < l, n, r,l', n', r' >E SQ <==> n = i An' = i 
A l' = 21 + {3 A r = 2r' + a 
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and if x = L then < l, n, r,l', n', r' >E SQ <==> n = i 1\ n' = j 1\ 

[(l = 2l' 1\ r' = 2(r + ,8- a)) V (l = 2l' + 1 1\ r' = 2(r + ,8- a) + 1)] 

Hence, we can see how the configurations of a Turing machine computation 
can be represented by a series of equations. We will discuss this further 
in what follows. First we deal with a fundamental question concerning 
algorithms. 

§5. The halting problem 

As discussed earlier on, a Turing machine if put to the task of calcu
lating a value of f(x) will halt and produce a value for f(x) if it is defined, 
but will carry on attempting to find f(x) never halting if f(x) is undefined. 
The problem then is being sure when f(x) is undefined, to be absolutely 
sure that f ( x) is undefined would mean that the Turing machine calculat
ing a value for f(x) would never halt. But the catch is that we can ever 
be absolutely certain that the machine never halts, unless we wait for an 
infinite length of time! Imagine a digital computer that we set to finding 
solutions to a certain problem. After a time of 10 years no solution has 
been found but this does mean that the machine will not find a solution 
within the next second in time. On the other hand we might for another 
thousand years and still no solution would be found. 

The question then arises: Is there an algorithm by which we could 
determine whether a Turing machine halts? First let us consider a sim
ple program in BASIC (digital computer programs can represent Turing 
machines and vice versa.) 

10 input x 
20 if x < 0 then goto 10 

30 let y = y + 1 

40 if x + y = 5 then goto 60 

50 goto 30 

60 end 

For such a simple program, we see that an algorithm can be found to 
determine if it halts or not. Simply check the value of x. H it exceeds 4 
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then the program will keep searching unsuccessfully for a solution to x + y 
and will never halt. H the value of x is 4 or smaller then the program will 
find a value for y and halt. Although for such a simple program we are 
able to determine whether it halts this is generally not possible for more 
complicated programs and for Turing machines. 

Theorem: 

There is no algorithm for testing whether a Turing machine M will 
eventually halt when put to the task of evaluating f(x) for given x. 

Proof: 
Let us begin by taking T1 , T2 ••• T., ... to be a list of all possible Turing 

machines which calculate all possible recursive functions. Such a listing is 
possible since each Turing machine can be represented by a finite set which 
in turn can be represented by the binary representation of an integer k. 
Let x1 , x2 •• • xn ... be a list of various inputs that we feed into the various 
machines. (Note that this list of inputs contains potentially infinitely many 
terms). Assuming that we have an algorithm for determining whether a 
machine halts, we then use a 1 to represent that the machine halts on a 
given input and a zero to represent that it does not. We can then construct 
a table to show which machines halt or do not halt on various inputs. 

Next we take the diagonal of the table as shown and invert it (Os 
become 1s and vice versa). This means that the diagonal (1 0 0 0 0) 
would become (0 1 1 1 1). From this we notice a very interesting fact. 
This inverted diagonal represents a new Turing machine not found in the 
list T1 ••• T41 •• .! This is because the p'th term (where pis a positive integer) 
in the string of ones and zeros following machine TP will always be different 
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from the pth term in the string of ones and zeros of the new machine. For 
example the third term of machine T3 is a zero while the third term of the 
new machine is a 1. 

We see then where the contradiction lies. Assuming that we are able 
to the determine halting and that T1" ... T,. ... is a list of all possible Turing 
machines, how is it that we able to obtain a yet another Turing machine 
not in the list. Thus we must conclude that we are unable to 'determine 
halting. (Note that the set K where K is the domain of recursive function 
f is recursively enumerable - this means that we can be sure a value z is 
in K only if the Turing machine halts, if it has not halted then we do not 
know if that value of z is in set K.) 

§6. Diophantine equations and sets 

Diophantine equations are simply equations consisting of polynomials 
whose variables range over the set of integers. From this .simple description 
we can then define Diophantine sets. 

Definition: 
A set S of ordered n-tuples is called Diophantine if there is a poly

nomial P(z1 ••• ~ ... , y1 ···Ym) with integer coefficients and where m ~ 0 such 
that an n-tuple < z 1 ••• z ... > then belongs to the Diophantine set S iff 
there exists integers < y1 ···Ym > such that P(z1 ... z ... , Yl···Ym) = 0. In 
other words, S = {< z1 ... z,. > (3Yl···Ym)[P(zl···z,.,yl···Ym) = 0]}. Al
ternatively the n-tuple could be thought of as an n-ary relation where S 
is the set of objects in this Diophantine relation. 

From this examination of Diophantine sets we make several observa
tions. 
(i) There is no algorithm for testing if there exists an m-tuple < y1 ···Ym > 

such that for a given n-tuple < z1 ... z ... > P(z1 ... z ... , Y1 ···Ym) = 0. 
(ii) Any diophantine set S is recursively enumerable. 

Let us examine whether we could possibly find an algorithm to de
termine the existence of solutions to diophantine equations. 

We can take the Diophantine set S and define its characteristic func
tion, G. : Z"' -----'-+ Z, where Z denotes the set of integers, such that 
G.(z1 ... ,z ... ) = 0 if then-tuple is in the setS and G.(z1 ... ,z ... ) to be 
undefined otherwise. Next we take Turing machine A to be the machine 
which evaluates the recursive function G. . An algorithm for evaluating 
such a function consist of arranging in sequence all possible combinations 
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of the m-tuple < y1 ... , Ym > and evaluating the polynomial P until (if 
ever) the value 0 is obtained, after which we conclude that this n-tuple 
< x1 ••• x,. > is in S. If we could determine if there existed an m-tuple such 
that P(x1 ••• , x,., y1 ••• , Ym) = 0 for a given n-tuple, it would mean finding 
an algorithm for determining if G. (x1 ••• , x,.) = 0 or is undefined, which 
would mean determining whether Turing machine A halts! We have shown 
that there is no effective method to do the latter so if every Turing machine 
could be so represented we could then conclude that there is no method 
for determining the existence of solutions of diophantine equations. 

First, recall the previous section in which the various Turing machine 
configurations were shown to be related by polynomial equations. From 
this we can in fact show that every Turing machine is represented by a dio
phantine equation and vice versa. The proof due to the combined efforts 
over many years of Y. Matijacevi~, Julia Robinson, Martin Davis, and 
Hilary Putnam will not be shown here but instead the reader is referred 
to [DAVIS 1977]. 

Hence the unsolvability of the halting problem now directly implies 
the lack of an algorithm for determining the existence of solutions. If we 
wanted to make this fact more explicit, we could again use the diagonal 
argument, taking the T1 ••• T,. ... to represent all possible diophantine equa
tions and x1 •• • x,. ... to represent all the various parameters for which we 
wanted to test for the existence of solutions. Again a 1 would represent 
existence while a zero would represent non-existence. We easily see how 
the second observation comes in. As there is no algorithm for determining 
the existence of an m-tuple for a given n-tuple, the only way of determin
ing if ann-tuple is in setS would be to polynomial P until a value of zero 
is obtained. But while trying out different combinations of m-tuples in 
an attempt to evaluate P to zero, we would never know if that particular 
n-tuple is in set S. Thus we can only be sure that an n-tuple is in set S, 
but we can never be sure that an n-tuple is not in set S. 

Although there is no algorithm to test whether there exists solutions 
to a polynomial for a given set of parameters, for simple polynomials such 
as linear equations there exists such algorithms. For linear equations we 
see that there is a simple algorithm for testing the equation ax + by = c 
for the existence of solutions in x andy. Simply take the triple < a, b, c > 
that we put into the equation and evaluate the greatest common divisor 
(g.c.d.) of a and b if cis divisible by this g.c.d., then there exists solutions 
in x and y. We also note other interesting facts about linear equations. 
For a triple < a, b, c > for which there exists solutions, we can simply 
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divide a, b and c by the g.c.d. to obtain a new triple. The new triple will 
have the same solution set in x and y as the original triple < a, b, c >. 

From our excursion through the concept of Diophantine sets, we no
tice certain striking similarities to Turing machines. 

(i) Both have simple exceptions to the unsolvability of the halting prob
lem and the non-existence of an algorithm which tests a polynomial 
for the existence of solutions with given parameters. 

(ii) We have seen how the non-existence of an algorithm for testing a 
given polynomial for the existence of solutions with given parameters 
is related to the halting problem. 

(iii) Both Diophantine sets and the domains of the recursive functions 
which Turing machines evaluate are recursively enumerable. 

§7. Some Diophantine relations 

For a period of time, mathematicians had been trying to prove that 
the relation z = x" was diophantine. The difficulty of such a proof was 
that combinations of equations which were already known to be Diophan
tine had to be used to encode the exponentiation relation, such that one 
of the solutions sets of this combination of diophantine relations would 
grow exponentially in relation to another solution set. In order to better 
appreciate the difficulty let us consider the example of 2x + 3y = 0. It is 
obvious that the solution set to such an equation would be 3a (where a 
is an integer) for x and 2a for y. Clearly linear equations cannot encode 
exponentiation. 

The proof for exponentiation was finally conquered in the nineteen 
seventies. No proof is given here, rather the reader should refer to any of 
the following for a detailed proof: MATIJACEVIC [1972], DAVIS [1971, 
1973]. What the proof involved was the using of Pell's equations to encode 
exponentiation. 

The proving of exponentiation as being Diophantine was extremely 
significant as it confirmed that the bounded quantifier theorem (refer to 
DAVIS [1973]) was indeed correct. The proof of this theorem had been 
done earlier assuming that the exponentiation was diophantine. This 
theorem expanded the language of Diophantine predicates and enabled 
Diophantine sets to be defined by bounded existential quantifiers (3y)~. 
which means (3y) (y ~ x) and bounded universal quantifiers ('v'y)~z which 
means ('v'y) (y ~ x). Putting all these results together gave the full solu-
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tion to Hilbert's tenth problem attributed to the four people mentioned 
above. 

With these expanded means of defining Diophantine sets let us then 
take a look at the set P of prime numbers. The set can be defined as 

z E P +---+ z > 1 A (Vy, z)~. [y · z < z V y • z > z V y = 1 V z = 1] 
The proof that exponentiation was Diophantine also enabled the relations 
m = {~) and m = n! to be confirmed as being Diophantine. A proof, 
assuming that exponentiation is diophantine, will now be given. 

Proof: 
First let us write cf>(k, u, w) for the coefficient of uk in the u-ary (base 

u) expansion of w. We see then that the relation q = cf>(k, u, w) is Dio
phantine as it can be expressed in simultaneous solvability in )./, the set 
of integers greater than or equal to 0, of these four conditions: 
(i) q + a + 1 = u ( i.e. q < u) 

(ii) p + b + 1 = uk ( i.e. p < u") 
(iii} c · uk+l = r (i.e. r = 0 (mod uk+l) ) 

(iv) w = p + q" + r 
n 

Then if u > 2" the binomial (u + 1)" = E {~)u'. This shows that (~)is 
i=O 

simply the coefficient of uk in the u-ary expansion of (u + 1)". Hence, 

m= (:) +--+m=c/>(k,2" +1,(u+1)"). 

We note that the conjunction of two polynomial equations P = 0 and 
Q = 0 is equivalent to the one equation, P 2 + Q2 = 0. Also solvability in 
)./ can be expressed by searching for solutions which are the sum of four 
squares of integers (using the famous theorem of Lagrange which states 
that being an element of)./ is equivalent to this condition). Thus m = {~) 
is Diophantine. 

Next, for the relation m = n!. It will be shown below that when 
r > (nl+l)(;)(n-t) then n! ~ f:y ~ n! + 1 holds true. Thus 

m = n! +---+ 3r3s3t3u3v{r = n" & u = (:) 

t = r" & u · m + s = t & t + v = u(m + 1)}. 
This shows that m = n! is Diophantine. 
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Proposition: 

When r > (nt+ 1)(;)(n- 1
) then n! $ 6 $ n! + 1. 

Proof: 

We examine the inequality 6 ~ n! + 1 (note that n! ~ f:J always 

holds). 

Manipulating the inequality: 

rn rnn!(r- n)! 
- < n! + 1 +-+ < n! + 1 
(:) - r! -

rn- 1 < n! + 1 
+-+~--~--~~~--~--~~ 

(r- 1)(r- 2) ... (r- (n- 1)) n! 

n-1 ( ) I 
+-+~an m > n. 
~ rm - n!+1 

m=O 

(where an (m) is the coefficient of r- m in r! 
1
) 

rn-1n. 
n-1 ( ) I 

1 L anm n. 
+-+ + >--

rm - n! + 1 
m=1 

+-+ ~ an (m) > _ 1 
~ rm - n!+ 1 

m=1 

an (1) nL-
1 

an (m) 1 
+-+ -- + > ---:--

r rm - n! + 1 
m=2 

From this, we approximate for r by using~ ~- nt~ 1 • This is possible 
n-1 

as "" a· Lm l is small as compared to ~ because of the much larger LJ r r 
m=2 

denominator in the former term. 

Next we evaluate the values of an (m) for n = 2 to 6 and m = 0 to 
n - 1. We find that they fall in the pattern below: 
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1 n=1 

l 
1 -1 n=2 

l /l -2 
1 -3 2 n=3 

l ~ l ~ l -3 
1 -6 11 -6 n=4 

l ~l ~l ~l -4 
1 -10 35 -50 24 n=5 

l /l ~ l ~l ~ l -5 
1 -15 85 -225 274 -120 n=6 

The vertically downward arrows indicate that the number above the ar
row is multiplied by the number beside the arrow and then added to the 
number above the diagonal arrow to obtain the result below both arrows, 
eg. in the row n = 4 -6 = (1}(-3) + (-3). 

From this pattern we discern certain interesting observations 
(i) The coefficients an (1) are always negative and are evaluated by the 

r 1 -n(n-1) 10rmu a ~ . 

(ii) To approximate the bound of r from~ >- (nl~ 1 ) it is enough to 
n-1 

show that, for r large enough, L: "':Lml > 0 (using: a> c and b > 0 
m=~ 

implies a+ b >c). 

Proof of observation 1: 
Let n = k then assume a,.,(1) = _A:(A:~- 1 ) let n = k+1 then a1,+t{1) = 

-k + _~o:c~o:~- 1 > = _CC"'+ 1>-
2
1l!"'+ 1> Hence, by induction an(1) is indeed 

-n(n-1) 
~ 

Now we show that the requirement in the second observation can be 
met when r is large enough (r > (n)(;-

1
> will suffice). To prove that 

n-1 
~ ~ > 0 it suffices to show that .!!..A.hl > _a,.(:e+ 1 l when x = 2y L...J rm r• r•+l 

m=2 

(since "'~~:el is always positive when xis odd). 
(1) an (x) = -(n- 1)an- 1 (x- 1) + an- 1 (x) hence an (x) > an- t(x). 

Therefore 

( (n)(n- 1) )an (x) > ( (n)(n- 1) )an-1 (x). 
2 2 
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n-1 
(2) -an (x + 1) = E an-k (x}(n --k). This follows inductively using the 

k=l 
recurrence relation. 

n-1 n-1 

L an_I(x)(n- k) > L an-k(x)(n- k) 
k=l k=1 

and hence 

From 1) and 2) we have ( (n)(;-
1

> )an (x) > -an (x + 1). H r > (n)(;-
1

> 

then~> _a.(:.:tll. Hence !!.alll. > _a,.(:.:t 1l when r > (n)(n-1). It 
r•+ 1 r•+ 1 r• r•+ 1 2 

now follows that (ntt l)(;)(n-l) gives us our required bound. 

§5. Conclusion 

We have seen how polynomials can represent Turing machines. Thus 
polynomials which look simple at first are actually more complex than we 
had thought, because of the large amount of data that they can encode. A 
most intriguing question for further thought would be· to determine under 
what conditions the simple polynomials for which we can find an algo
rithm to determine the existence of solutions become truly complicated 
(that is when we can no longer determine if there exist solutions to the 
polynomial). 
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