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A wavelet basis is a sequence of functions that is generated from 
a single function .,P, called mother wavelet, by taking combinations of 
translates and dilates of t/J. More specifically, it has the form 

where a, b > 0 are fixed constants. As an example, for a = 2, b = 1 and t/J 
given by 

t/J(x) = { ~ 
~-X 

x<O 
O~x~1 

1~x~2 

X> 2, 

the sequence { ~ t/J(2m - n)}m,nE:lL is a wavelet basis. 

Like Fourier analysis, wavelet basis allows decomposition of functions into 
coefficients. We will discuss later the advantages of wavelet decomposition 
over the conventional Fourier decomposition. 

Wavelets were introduced in France in the early 1980s by Jean Mor­
let, a geophysicist and Alexander Grossman, a mathematical physicist, to 
analyse seismic signal. The mathematical theory of wavelets took off in 
1985 when Yves Meyer, also in France, constructed the first orthogonal 
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system of smooth wavelets such that their fourier transform have compact 
support. In 1986, Meyer and Stephane Mallat developed the theory of 
multiresolution analysis that provides a natural framewprk for the theory 
of wavelet approximations and construction of orthonormal wavelet basis. 
I. Daubechies, in 1987, constructed orthogonal systems of compactly sup­
ported wavelets (the size of the support grows linearly with the degree of 
smoothness). Since then, this area has flourished. 

The potential applications of the wavelet theory in mathematics, en­
gineering and physics explains why it has attracted so much attention. 
The theory has shown great promises in the areas of pure and applied 
mathematics like approximation theory, harmonic analysis, operator the­
ory, numerical partial differential equations, etc. Much of the interest in 
the engineering side is in the applications to signal processing (ranging 
from image processing, acoustic signal, seismic signal to synthetic music) 
where wavelets seem to hold great promise for detection of edges and sin­
gularities, providing efficient decomposition and reconstruction algorithm 
for signals, and data compression. Not to forget, physicists are already 
using wavelets in quantum mechanics and quantum field theory. 

Why wavelets come into the scene at all, a natural question one would 
ask. It is well known that the representation of a signal f(t) (acoustic, 
electrical, etc) by means of its spectrum (or Fourier transform) is essential 
to solve many problems in engineering and mathematics. In fact, the 
spectral behaviour of the signal (i.e. j( w)) in the frequency domain is 
the actual data that one has in practice. However, F. T. techniques has a 
very serious deficiency in that the time evolution of the frequencies is not 
reflected in this representation as it requires information of the signal in 
the entire time-domain 

!"'( ) 1 [oooo f(t)e- itw dt. w = V2-i 

One can see that, if f(t) is perturbed by an impulse at timet= t0 , f(w) 
would change correspondingly but it does not tell us when is f(t) being 
perturbed. It is important to know this if one is to edit out this unwanted 
perturbation in f(t) such as an attack of a musical note. 

Noticing this deficiency, D Gabor, in his 1946 paper, introduced a 
time-frequency localization method (called short-time Fourier transform, 
STFT) by introducing a window function g to "window" the Fourier inte-
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gral 

Gf(w, t) =I: f(t')e-iwt' g(t'- t)dt' 

=I: i(w')e-i(w-w')tg(w'- w)dw'. 

From these two integrals, we see that G(w, t) depends essentially on f(t') 
fort' E [t- ua,t + uaJ and j(w') for w' E [w- uil,w + uil] in the time 
and frequency domain respectively. We have chosen g to be real-valued 

· fu:r;1ction such that 

I: lg( t) 12 dt = 1, I: tlg(t) 12 dt = o 

and ug, uil are respectively the standard deviation of g and g, 

2_ (Til - 1
00 

-00 

We assumed that the dependent of Gf(w,t) on f(t') and j(w') is signif­
icant only for t' within a standard deviation of g from t and w' within a 
standard deviation of g from w respectively. 

The Fourier transform off evaluated at w(i.e.j(w)), measures the 
amplitude of the sinuosodial wave component of frequencey w. Like­
wise, Gf(w,t) measures locally, around timet, the amplitude of the sin­
uosoidal wave component of frequency w, depending essentially on the 
time-frequency window [t - ua, t + Ua] x [w - uil, w + uil ]. Of course, the 
size of the window is limited by uncertainty principle which says that 

frequency 

•• •••••· ••••••• ·1-----~~ , 
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Suppose f(t) is perturbed by an impulse at t = t0 , then this would be 
reflected in Gf(w,t) fort E [to - uu,to + uu]· Thus, the information 
provided by this decomposition is therefore unlocalized within intervals of 
size uu. Similar conclusion holds in the frequency domain. If a signal has 
a discontinuity such as an edge, it is difficult to locate it with a precision 
better than Uu. In general, for edge detection, the tim~window must be 
very narrow at a high-frequency band (for the location of an edge) for 
accuracy, and very wide at a low-frequency band for efficiency. Because 
the time and frequency resolution of STFT is constant (i.e. the size of the 
time and frequency windows are independent of t and w), it is impossible 
to define an optimal resolution for analysing signal that has important 
features of very different sizes. This is particularly the case with images, 
for example, in the image of a house, the pattern we want to analyse might 
range from the overall structure of the house (low frequency band) to the 
details on one of the curtains (high frequency band) 

To overcome the inflexibility of fixed time-frequency resolution of 
STFT, A Grossman and J. Marlet introduced integral wavelet transform 
(IWT) in 1984. 

W /(a, b) = Ja /_: f(t)t/J(a(t- b))dt 

1 foo ... . "(w) = - f(w)e•bw t/J - dw, 
Va -oo a 

where t/J is a chosen fixed real-valued function such that f.~oo lt/J(t) 1
2 dt = 1, 

f~oo tlt/J(t)l 2 dt = 0 and f~oo t/J(t)dt = 0. The first integral shows that 
Wf(a,b) depends on f(t) essentially fort E [b- 7, b + 7), where 

u! = f~oo t 2 lt/J(t)l 2 dt. Let w0 = f 0

00 wl~(w)l2 dw. In practice, 1/(w)l = 0 

for w < 0, the second integral shows that W f(a, b) depends on /(w) 
essentially for 

wE [aw0 - au.p, aw0 + au.p], 

where u~ = fooo (w- w0 ) 2 ~(w)l2 dw. The time-frequency localization is 
thus given by 

[ 
U.p U.p] b- -, b +- X [aw0 - au.p ,aw0 + au.p]· 
a a 

The significance of IWT is that, when the scale a is large, the resolution is 
coarse in the frequency domain and fine in the time domain. As the scale a 
decreases, the resolution increases in the frequency domain and decreases 
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in the time domain. This variation of resolution enables the IWT to zoom 
into the details of a function in a way STFT cannot, (identify a with 
a constant multiple of the frequency) giving sharper time resolution at 
higher frequencies and efficiency at low frequencies. 
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Time-frequency localization windows of IWT 

As wavelet decomposition separates and localize the spectral information 
in different frequency bands, hence filtering, detection, data reduction, 
enhancement can be easily implemented before applying the wavelet re­
construction algorithm. And it is this capability- of wavelets that has made 
it a star in the engineering, physical and mathematical communities. 
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