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It has been said that every good idea has been thought 
of beforet. This may not seem true in Mathematics, where so much 
spectacular progress has been made in our day; nevertheless there is some 
truth in it, in the sense that every new idea has its ancester somewhere 
among the great old ideas. Here I want to trace one idea down the ages : 
Euclid's algorithm. 

1. Consider the natural numbers: 

N: 1,2,3, .... 

The two operations that can be performed on them, addition and multi
plication, show very different behaviour. Using + we can get all positive 
integers by starting from 1 : 2 = 1 + 1, 3 = 1 + 1 + 1, ... ;we say that N is 
generated by 1, using+. For multiplication we need an infinite generating 
set, consisting of all the prime numbers: p1 = 2, p2 = 3, p3 = 5, .... Every 
number a is uniquely expressible in the form 

(1) 

where the a, are non-negative integers and all but a finite number of 
them are 0. This is often called the Fundamental Theorem of Arithmetic. 
Nowadays one usually states it for the ring Z of all integers (got from N 
by throwing in zero and the negative integers). Thus we can say that in Z 
every non-zero element is either a unit (i.e. invertible, namely 1 or -1), or a 
product of unfactorable elements, which are unique except for the ord~r in 

* Lecture given to the Singapore Mathematical Society on April 10, 1991. The article first 
appeared in EUREKA 44(1984), 39-45 and thanks are due to the editors for permission to 
reprint it here (in slightly revised form). 

t Alles gescheite ist schon gedacht worden; man muss nur versuchen es noch einmal zu denken 
(Goethe: Spriiche in Prosa). 
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which they occur and for unit factors (e.g. 6 = 2·3 = ( -3)·( -2) etc.). This 
is expressed more briefly by saying: Z is a unique factorization domain, 
or more briefly still, a UFD. 

In a UFD it is easy to describe the highest common factor (HCF) 
and least common multiple (LCM) of two members. Instead of (1) we can 
briefly write a= IIp;;. If b = IIp:; is another element, then we have 

(2) 
(3) 

HCF: (a, b)= II p:i, 

LCM : [a, b] = II p~i, 

where 6i = min{~,,Bi}, 
where J-ti = max{~,,Bd. 

For example, take a = 36 = 22 
• 32

, b = 50 = 2.52
; then (a, b) = 2, 

[a, b] = 900. If we know one of (2), (3), we can find the other by the 
formula : (a, b)[a, b] = ab, but this is of no help in finding the HCF and 
LCM themeselves, unless all factorizations (1) are known. 

To find the HCF of two numbers a, b without factorizing them, Euclid 
[2] uses the division with remainder : if b > 0, there exist numbers q, r 
such that 

(4) a= bq + r, 0 ~ r <b. 

We now repeat the process with a, b replaced by b, rand continue in this 
way, getting a chain of equations 

(5) 

a= bq1 + r 1 , 

b = r 1 q2 + r 2 , 

r 1 = r2 q3 + r3 , b > r 1 > r2 > ... 

r n- 1 = r n qn + 1 • 

Since the remainders are decreasing positive integers, the chain must break 
off, when rn+ 1 = 0. It is easy to check that the last non-zero remainder 
rn is the HCF of a and b, as we shall see in a moment, and we have an 
algorithm, because the answer is always reached in a finite number 
of steps. Here is a flow-chart to find the HCF of two non-negative 
integers a, b : 

Q ---+ ~ ~ ~ ~ Replace a 
0 ~ ~ bya-b 

lyes ~ lno 
Answer: a Interchange 

Finish a and b 
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The chain (5) of equations can be rewritten as follows in terms of 

. (X 1) (0 1 ) matnces. If we put P(x) = 
1 0 

, then P(x)- 1 = 
1 

-x and (5) 

takes the form (where (a, b) denotes a 2-component vector, not the HCF) 

(6) 

(a, b) = (b, rt)P(qt), 

(b,rt) = (r1,r2)P(q2), 

Let us write C = P(qn+ t)P(qn) ... P(qt); then the matrix C has an in
verse, because each P has, and we obtain from (6), 

(7) " 

We shall write dia to indicate that a = md for some m, i.e. that a is 
divisible by d. The first equation (7) shows that r n Ia, r n lb, so r n is a 
common factor of a, b. The second equation has the form r n = au + bv, 
(where u, v are the entries of the first column of c- 1

, again integers). 
Hence any common factor of a, b also divides r n and this shows r n to be 
the required HCF. 

2. It is not difficult to obtain explicit formulae for a, b in terms of the 
quotients and remainders occuring in the Euclidean algorithm. We define 
polynomials Pn in n variables recursively by Po = 1, p1 (t1) = t1, and for 
n 2:2, 

This definition shows incidentally that Pn (1, 1, ... , 1) is the nth Fibonacci 
number, cf. [3]. The first few p's are 1, t1, t1 t2 + 1, t1 t2 t3 +t3 +t1, t1 t2 ts t, + 
t 3 t 4 +t1 t4 +t1 t2 + 1. In general Pn is formed by the "'leapfrog rule": write 
down t 1 t 2 ••• tn and add to it all products obtained by omitting one or more 
pairs t, ti+ 1 • Alternatively Pn may be described as the polynomial part of 
the rational function 

The Pn occur as numerators and denominators of continued fractions [3], 
and so are called continuant polynomials, and they can also be described 
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as determinants (continuants), but our interest in them here stems from 
the fact that (by an easy inducation), 

(8) 

(where the suffix on p, has been omitted for simplicity). Since P(x) has 
determinant -1, the inverse of (8) follows from the formula 

(9) (
a b)- 1 

=(-1)n ( d -b)· 
c d -c a 

If we now apply (8) to the Euclidean algorithm we find that for any positive 
integers a, b with HCF d, we have 

(10) 

and 

(11) d = bu- av, 

3. One can ask similar questions about the ring of polynomials a0 xn + 
a 1 xn- 1 + ... +an with rational (or real) coefficients. The answer is now part 
of most second year courses, but it was not always so easy. Pedro Nunez 
[5] (inventor of the Vernier scale), writing in 1567 tries to find the HCF 
of two polynomials, but without success; he does not get beyond some 
generalities. Yet only 18 years later Simon Stevin [6] sets it as a problem 
and says: the answer is obtained by applying the Euclidean algorithm, as 
for integers. Of course this is not quite true, we need to use the degree of 
the polynomial in place of the absolute value of a. But why did Nuiiez find 
it so hard? My guess is that he took integer coefficients; then the Euclidean 
algorithm does not apply and in fact the problem is quite difficult. Stevin 
(who among other things introduced decimal notation) would be more 
likely to use rational coefficients and so make the problem more tractable. 

4. We now have two examples and true to modern habits, we try to find 
a description to fit both. Our starting point is any integral domain, i.e. a 
ring (not necessarily commutative) without zero-divisors and with 1 =I= 0. 
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An integral domain R is called a Euclidean domain if for each a E R there 
is a non-negative integer 4>(a) with the properties: 

E.1 4>(0) = 0, 
E.2 4>(ab) ~ 4>(a) for all a, bE R, b =/; 0, 
E.3 For any a, b E R if b =/; 0 and 4>(a) ~ 4>(b), there exists c E R such 

that 

(12) 4>(a- be) < 4>(a). 

From E.3 we can easily derive the more usual form of the division algo
rithm: 

E.3' For any a, b E R, if b =/; 0, there exist q, r E R such that 

(13) a= bq + r, 4>(r) < 4>(b). 

If 4> is constant on the non-zero elements of R, then by E.3 every 
non-zero element of R has an inverse, so R is a field. We shall exclude 
this rather trivial case. 

To prove that E.3 and E.3' are equivalent, assume E.3 and for given 
a, b, choose q, r in (13) with 4>(r) minimal. If 4>(r) ~ 4>(b), then by E.3, 
4>(r-bc) < 4>(r) for some c E R, but r-bc = a-b(q+c) and this contradicts 
the minimality of 4>(r). Conversely, if E.3' is given and 4>(a) ~ 4>(b), we 
take q, r as in (13); then 4>(a- bq) = 4>(r) < 4>(b) ~ 4>(a). 

One can now develop the Euclidean algorithm as before and use it to 
prove the existence of HCF and LCM, and also the following property of 
unfactorable elements, used to establish unique factorization: 

Euclid's Lemma. Given any unfactorable element p in a (commutative) 
Euclidean domain, if p divides ab, then p divides a or p divides b. 

The proof is in all text-books and depends on the Bezout identity: 

(14) HCF(a,b) =au+ bv, 

which expresses the HCF of a and bas a linear combination of a and b. 
More generally one can show that in a Euclidean domain R any ideal 

can be generated by a single element, i.e. R is a principal ideal domain. 
We shall not give details (nor even define 'ideal'), but merely note the 
following examples of Euclidean domains: (i) Z, 4>(a) = lal, (ii) k[x], k 
a field, 4>(a) = deg a, (iii) Z[i] or more generally, the ring of integers in 
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Q(Vd), <P(a) = lal, when d = -1, -2, -3, -7, -11 and 2, 3, 5, 6, 7, 11, 13, 
17, 19, 21, 29, 33, 37, 41, 55, 73 (cf. [7],p.95). 

5. By a more elaborate method (using Gauss's lemma) one can show that 
the polynomial ring in several variables k[x1, ... , Xn] over any field k of 
coefficients is a UFD, but for n > 1 the Euclidean algorithm seems to have 
got lost. This may well be connected with the fact that whereas in k[x] 
every ideal is principal, this is no longer the case in the ring k[x1 , ••• , Xn] 
for n > 1. Some efforts to find a Euclidean algorithm or a substitute were 
made (cf. e.g. [4]), but without much success. 

Nevertheless there is an analogue applying to polynomial rings which 
enables us to prove almost everything the usual algorithm does (as far as it 
is true). It applies to polynomials in any number of variables over any field 
k, but with the proviso that the variables do not commute. This polyno
mial ring in non-commuting variables is called the free associative algebra 
on x1 , ••• , Xn over k, written k(x1 , ••• , Xn)· 

To find this general algorithm, let us take two variables x, y for 
simplicity. Given two elements of k(x, y), say I = x 2 y + yx + 1 and 
g = xyx + yxy, in general neither can be divided by the other (even with 
remainder), for a very good reason: I and g have no common right mul
tiple at all, apart from zero. This is a new feature which did not appear 
in the commutative case, where any two non-zero elements I, g have the 
common multiple I g = gl. H we now restrict attention to pairs with a 
non-zero common right multiple, we find that the Euclidean algorithm is 
restored. E.g., if I= xyz+z+x, g = xy+ 1, then I= gz+x, g = x·y+ 1, 
x = 1 · x. In this example, I = p(x, y, z), g = p(x, y) in the notation of 
Section 2; this is no accident, for as we saw, the Euclidean algorithm can 
always be expressed in terms of the p's; of course in general the arguments 
of the p's will be much more complicated than this example. 

What we actually need is a kind of n-term algorithm which applies 
whenever an appropriate right multiple condition is satisfied. This is the 

Weak algorithm. Given a 1 , ••• ,am, af there exist b1 , ••• , bm such that 

<P(La,bi) < max{<JI(a1 b!), ... ,<jl(ambm)}, 

and if the a's are numbered in such a way that <P( a1 ) ::; <P( a2 ) ::; ••• ::; 

<P(am), then there exists i in the range 2::; i::; m and c1 , ••• ,c;_ 1 E R 
such that 

j-1 

<P(a;- l:a,c,) < <P(a;), <P(a.c,)::; <P(a;) (i = 1, ... ,;" -1). 
1 
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This is satisfied by the free algebra k(X) in any set X of non-commuting 
variables over a field k, taking 4> to be the usual degree. In fact free 
algebras may be characterized in this way, and more generally, all rings 
with a week algorithm can be determined (cf. [1], Ch.2). 

The weak algorithm enables one to prove a unique factorization prop
erty: any two complete factorizations of a given element have the same 
number of factors and the factors on the two sides can be paired off so 
that corresponding factors are 'similar'; we shall not define this term here 
but merely remark that in the commutative case two elements are similar 
precisely if they differ by a unit factor. As a simple example we have the 
factorizations in k(x, y): 

(15) xyx + x = (xy + 1)x = x(yx + 1); 

here xy + 1 is similar to yx + 1. To give another example, over R(x, y) the 
element a = xy2 x + xy + yx + x 2 + 1 is unfactorable, but when the ground 
field is extended to C, a can be factorized as 

a= (xy + ix + 1)(yx- ix + 1). 

Writing b = xy2 + x + y, we have b2 + 1 = a(y2 + 1) and this shows that 
a and b have a non-zero commont right multiple. Hence one can carry 
out the Euclidean algorithm for a, b (more precisely, the right Euclidean 
algorithm); this is an amusing and not too difficult exercise. 

For any two elements a, b which have a common non-zero right mul
tiple, there is a highest common left factor d, which can again be written 
as a right linear combination of a and b, as in (11). In fact, exactly the 
same formulae (10), (11) apply, where the q's are the quotients obtained 
from the weak algorithm (cf.[1], Ch.2). Here the Pn are defined as before 
and (8) still holds. The formula (9) for the inverse matrix cannot now be 
used, but the inverse exists and is easily written down, bearing in mind 
that P(x) has an inverse. 

Of course, the ideals in k(X) are not principal, but they are free, as 
modules over the ring, of well-defined rank, thus k(X) is a free ideal ring 
(fir for short). One can work out a theory of firs which in many respects 
parallels the theory of principal ideal domains, and one finds that many 
important rings are firs. Better still, some have a weak algorithm; this 
enables one to take over most of the formulae of Section 2, but in spite ()f 
their very explicit form, many questions can be asked about these rings 
which are still unanswered. The first Edition of [1] appeared in 1971 and 
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.. 
contained 86 open problems, of which 15 were solved)n the next 14 years. 
The Second Edition (1985) contains 103 open problems, of which 8 have 
been solved to date, leaving 95 still unsolved. 
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