
Problems and Solutions 

Problems and Solutions. The aim of this section is to encourage read
ers to participate in the intriguing process of problem solving in Mathe
matics. This section publishes problems and solutions proposed by readers 
and editors. 

Readers are welcome to submit solutions to the following problems. 
Your solutions, if chosen, will be published in the next issue, bearing 
your full name and address. A publishable solution must be correct and 
complete, and presented in a well-organised manner. Moreover, elegant, 
clear and concise solutions are preferred. 

Readers are also invited to propose problems for future issues. Prob
lems should be submitted with solutions, if any. Relevant references should 
be stated. Indicate with an o if the problem is original and with an * if 
its solution is not available. 

All problems and solutions should be typewritten double-spaced, 
and two copies should be sent to the Editor, Mathematical Medley, 
c/o Department of Mathematics, The National University of Singapore, 
10 Kent Ridge Crescent, Singapore 0511. 

Problems 

P20.1.1. Proposed by the Editor. 

Let f be a real-valued function of a real variable whose derivatives up 
to 4th order are continuous on [-v'3, v'3]. If /(±1) = 0 and l/( 4

) (x)l ~ 
1 V x E [-J3, J3], show that 

11.;3 I J3 f(x)dx ~ -. 
- .;3 15 
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Solutions 
The following are solutions of the problems in Volume 19, Number 2, 
December 1991. 

P19.1.1. Solution by the Editor. 

Let x 0 := 1, and Xn := (2xn- t) t, n = 1, 2, .... Then, by induction, 

Xn = 2(1+4+ ... +4"-1)/4" 

_ 2(4"-1)/3X 4" Q 1 - ' n= ' , ... 

1. Hence Xn -+ 2s as n-+ oo. 

From the solution, one can easily construct similar algorithms to approxi
mate other roots of numbers. For instance, to compute \12, we let x0 = 1, 
and Xn = (2xn- t) t, n = 1, 2, .... This means that each step we multiply 
the previous number by 2 and take square root and cube root successively. 
Then 

P19.2.1. Official Solution. 

Using the sine rule in the triangles !lAIC and !lAIC' gives IC' /CI = 
AC' /b and similarly considering the triangles !lCIB and !lBIC' gives 
IC' /CI = C' Bja. Hence 

which implies 

Analogously we get 

AI 
AA' 

c = AC' + C' B =(a+ b) IC' 
CI 

CI a+b 
CC'- a+b+c' 

b+c 
a+b+c 

and 
BI a+c 
BB'- a+b+c' 

The inequality between the arithmetic and geometric means gives 
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Hence 

(2) 3 
AI·Bl·CI 

3 ~ AA' BB'CC' 

and we have proved the right inequality. To prove the left inequality we 
recall the following simple facts: 

1. If x + y = x1 + Y1 and Jx- yJ < Jx1 - Y1l then x3 + y3 <xi+ Yi for 
positive real numbers. 

2. For any real numbers a, b, c the following equality holds 

Suppose that a ~ b ~ c. Using the triangle inequality and c > 0 we get 
(a+b+c)l2-(a+b-c)l2 = c >Ja-b+ and (a+b+c)l2 > J(a+b-c)l2-cJ. 
Thus 

AI· BI · CI (a+ b + c) 3 
- a3 

- b3 
- c3 

AA' BB'CC' 3(a + b + c) 3 

(a+ b + c)3 
- ((a+ b + c)l2)3 - ((a+ b- c)l2)3 - c3 

> ~----~--~~----~~~~~----~~~----
3(a + bc)S 

(a + b + c) 3 
- ( (a + b + c) I 2) 3 

- ( (a + b + c) I 2) 3 
- c3 

> ~----~--~~--~~~~~~------~~----

1 

4 

P19.2.2. Official Solution. 

3(a+b+b)3 

We have a 1 = 1 and a2 = p, where pis the smallest prime number which 
does not divide n; ak = n -1 and the constant difference a; -a;_ 1 between 
two consecutive terms is denoted r = p - 1. 

If n is odd then a2 = 2, r = 1 and the sequence is 1, 2, ... , n- 1. Since all 
positive integers less than n are relatively prime with n, it follows that n 
is a prime number. 

If n is even we must have p ~ 3. In case p = 3 then r = 2 and the sequence 
is 1, 3, 5, ... , n- 1. Since for every odd q, q < n, we have that q and n are 
relatively prime, n cannot have any odd prime factors, and we deduce that 
n = 2m for some positive integer m. 

32 



In case p > 3 it follow that 3ln. Since ak 
n- 1 = 1 + (p- 1)(k- 1) which implies 

(p- 1)l(n- 2). 

a1 + r(k- 1), we have 

(1) 

Let q be a prime number such that qi(P- 1). From (1) we deduce that 
ql(n- 2). Now q < p and thus qln. Since also ql(n- 2) it follows that ql2 
and consequently q = 2. Hence all prime factors of p- 1 are equal to 2, 
and it follows that p- 1 = 2l, or p = 2l + 1, where l ~ 2. Note that for 
any integer j ~ 0, 3I(22H 1 + 1). Thus since pis a prime number l must 
be even, l = 2j. We have as = a1 + 2r = 1 + 2(p -1) = 2p -1 = 22H 1 + 1 
which is divisible by 3. But 3las and 3ln contradict the fact that as and 
n are relatively prime. The proof is complete. 

P19.2.3. Official Solution. 

Set A1 = {k E S;2lk}, A2 = {k E S;3lk}, As = {k E S;5lk}, A4 = {k E 
S; 7lk} and A= A1 UA2 UAs UA4. We have IA1I = 140, IA2I = 93, lAs I= 
56 and IA41 = 40. Similarly, IAl nA21 = 46, IAl nAsi = 28, IAl nA41 = 20, 
IA2 nAsI = 18, IA2 n A41 = 13, lAs n A41 = 8, IA1 n A2 nAsI = 9, 
IA1 nA2 nA41 = 6, IA1 nAs nA41 = 4, IA2 nAs nA41 = 2, IA1 nA2 nA41 = 1. 
By the inclusion and exclusion principle 

IA1 = IA1 U A2 U As U A41 

= 140 + 93 + 56+ 40 - 46 - 28 - 20 - 18 - 13 - 8 + 9 + 6 + 4 + 2 - 1 

= 216. 

For any five members in A, by the pigeonhole principle, there are two of 
them belonging to some Ai, 1 ~ i ~ 4, hence these numbers are not prime 
to each other. We have proved that n > 216. 

On the other hand, let B1 = A\ {2, 3, 5, 7}, B2 = {112, 11 x 13,11 x 
17,11 x 19,11 x 23,132,13 x 17,13 x 19} and P = S \ {B1 U B2}. We see 
that IPI = lSI ---, IB11 - IB21 = 60 and P consists of 1 and all the prime 
numbers inS. Suppose that Tis a subset of S with ITI = 217. We shall 
show that T contains 5 numbers which are pairwise relatively prime. It is 
obvious that we have only to consider the case when IT n PI ~ 4. In this 
case IT n (S \ P)l ~ 217-4 = 213, i.e., among all composite numbers in 
S (total number is IS\ PI= 220), there are at most 7 members which are 
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not in T. Let M 1 , M2 , ••• , M8 denote the sets 

{2 X 23,3 X 19,5 X 17,7 X 13,11 X 11}, 

{2 X 29,3 X 23,5 X 19,7 X 17,11 X 13}, 

{2 X 31,3 X 29,5 X 23,7 X 19,11 X 17}, 

{2 X 37,3 X 31,5 X 29,7 X 23,11 X 19}, 

{2 X 41,3 X 37,5 X 31,7 X 29,11 X 23}, 

{2 X 43,3 X 41,5 X 37,7 X 31,13 X 17}, 

{2 X 47,3 X 43,5 X 41,7 X 37,13 X 19}, 

{ 22' 32 ' 52' 72 ' 132}' 

respectively. Obviously Mi C S \ P, i = 1,2, ... ,8. By the pigeonhole 
principle there is an i 0 , 1 :::; i 0 :::; 8, such that Mio C T. The five members 
of Mio are pairwise relatively prime. Summing up, we conclude that n = 
217. 

P19.2.4. Official Solution. 

Start at some vertex v0 • Walk along distinct edges of the graph, numbering 
them 1, 2, ... in the order you encounter them, until it is no longer possible 
to proceed without reusing an edge. 

If there are still edges which are not numbered, one of them has a vertex 
which has been visited, for else G would not be connected. Starting from 
this vertex, continue to walk along unused edges, resuming the numbering 
where you left off. Eventually you will get stuck. Repeat the procedure 
just described until all edges are numbered. 

Let v be a vertex which is incident with e edges, where e ~ 2. If v = v0 

then v is on edge 1, so the GCD at v is 1. If v =I v0 , suppose the first time 
you reached v was at the end of edge r. At that time there were e - 1 ~ 1 
unused edges incident with v, so one of them was labeled r + 1. The GCD 
of any set containing r and r + 1 is 1. 

P19.2.5. 

We denote a= LPAB, {3 = LPBC, "/ = LPCA and x = AP, y = BP, 
z=CP. 

Assume that a,/3,"/ are all greater than 30°. We want to prove that this 
leads to a contradiction. Clearly the angles LA, LB, LC are < 120°. Let 
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T be the area of the triangle !:iABC. 

T 1 . 1 . {3 1b . = 2cx sm a+ 2ay sm + '2 z sm"' 

1 
> 4(cx+ay+bz) 

where we have used that sino:, sin {3, sin"/ are all > 1/2. As will be proved 
below a2 + b2 + c2 ~ 4J3T and hence 

By the cosine theorem 

x2 = b2 + z2 
- 2bz cos "f > b2 + z2 

- Vsbz 

y2 = c2 + x2 
- 2cx cos a > c2 + x2 

- Vscx 

z 2 = a2 + y2 
- 2ay cos {3 > a2 + y2 

- Vsbz 

using cos a, cos {3, cos "/ < J3J2. Adding the inequalities in (2) we get 

which contradicts (1). 

(1) 

(2) 

It remains to prove the inequality a2 + b2 + c2 ~ 4VsT. Using the cosine 
law and the area law we see that 

and hence we have to prove that 

cot a + cot {3 + cot "/ ~ vi (3) 

If a:, {3, "/ all lie in (0, 1r /2] we use the convexity of u .....,.. cot u; in the case 
when for example "/ E ( 1r /2, 1r) we can write 

a+{3 
cot a + cot {3 + cot "/ ~ 2cot -

2
- + cot "/ 

a+{3 
~cot -

2
-- cot( a:+ {3) 
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which gives 
c2 - 1 

cot a + cot {3 + cot 1 2:: 2c -
2

c 

3 1 
>-c+->J3 - 2 2c-

with c =cot a; {3. This proves (3) and completes the proof. 

P19.2.6. Official Solution. 

Every natural number can be expressed (uniquely) in a binary represen
tation. (This binary representation makes the notation more readable.) 

Suppose i = b0 + b1 2 + b2 22 + ... + b~o2k with all b, E {0, 1} and kEN. 
Define 

so that 
1 

0 < h· < 1 + 2-a + 2-2a + ••• + 2-ka < ---
- I- - 1- 2-a 

Take;",;" =/=- i, ;" = c0 + c1 2 + ... + c~o2k, c, E {0, 1} and let t = min{p E 
{0, 1, 2, ... , k} lbP =I cP }. Then 

!h,- hi!= l(bo- Co)+ (bl- ct)2-a + (b2- c2)2- 2a + ... + (b~o- c~o)2- 2 kal 

2:: l(bt- Ct)2-tal-l(bt+l- ct+t)2-(t+l)al- .. -l(b~o- c~o)2-kal 

2:: 2-ta- 2-(t+l)a = 2-ta (1- 2-a ) = (2tta (2a 2) 
1-2-a 1-2-a 2a-1 

2:: ( ~: = ~ ) I i - ;" ~- a 

The last inequality used the fact that 2t ~ li- il· To see this put s = 
max{p E {0, 1, ... ,k}lbP =/=- cP}. Then 

•-1 

li-;"12:: l(b. -c.)2"1- L2~< =2t. 
k=t 

So 

lh h I I
• ., a 2a - 2 

·- · ·t-J- > . 
I J - 2a - 1 

2a- 2 
Define X · = · h·. 

I 2a - 1 I 
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