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Introduction 

The starting point for work in problem-solving strategies in math
ematics is, as we all know, George Poly a. His famous books laid the 
foundation for research in heuristics - strategies and techniques for mak
ing progress on unfamiliar and nonstandard problems. He was also the 
first person to describe problem-solving strategies in such a way that they 
could be taught. In his pioneer book How To Solve It, published in 1945, 
Polya proposed four phases in problem-solving: understanding the prob
lem, devising a plan, carrying out the plan and looking back. 

In his four-phase plan and other works, Polya suggested a list of 
heuristics, which includes: 

Drawing a figure 
Introducing suitable notations, auxiliary elements 
Examining special cases (looking at simpler cases to search for a 

pattern; examining limiting cases to explore the range of 
possibilities) 

Modifying the problem (replacing given conditions by equivalent ones; 
recombining the elements of the problem in different ways) 

Exploiting related problems (simpler problems, auxiliary problems, 
analogous problems) 

Working backwards 
Arguing by contradiction or contrapositive 
Decomposing and recombining 
Generalising 
Specialising 
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Exploiting symmetry and parity 

In the 1980s, Alan Schoenfeld proposed a framework for investiga
tion of complex mathematical problem-solving behaviour. The framework 
comprises four categories: resouces (mathematical knowledge possessed 
by the individual that can be brought to bear on the problem at hand), 
heuristics, control (global decisions regarding the selection and imple
mentation of resources and strategies) and belief systems (one's perspec
tives regarding the nature of mathematics and how one goes about working 
it). This paper reports the author's pilot study on problem-solving strate
gies (mainly heuristics but some useful resources and guidelines on control 
in the context of Schoenfeld's framework are also included) for problems 
in national and international olympiads. This report is a brief summary 
of my findings after investigating the solutions to a pool of olympiad prob
lems with one example included to illustrate each strategy. The survey is 
not exhaustive but it is a first step towards the author's intended large
scale study on the topic. In completing the report, I was benefitted by the 
works of a number of contemporary Chinese problemists, to whom I wish 
to express my gratitude. 

Some Basic Strategies 

One of the most commonly used strategies in solving olympiad prob
lems is to search for a pattern, from which we may be able to make a 
conjecture and then prove it. 

[IMO 1964] 
Find all positive integers n for which 2" - 1 is divisible by 7. 

H we calculate the values of 2" for n = 1, 2, 3, ... , up to 10 (say) 
and divide each value by 7, then the pattern of remainders obtained is 
clear enough to help us to form a conjecture on the remainders and then 
prove it by using simple properties of integers and, perhaps, the binomial 
theorem. Some easier olympiad problems such as this one can be solved 
with little further difficulty after we have observed a pattern. However, 
there are even more olympiad problems for which the heuristic 'search for 
a pattern' provides only the first breakthrough and proving the conjecture 
is still challenging enough. 

Another useful heuristic in solving olympiad problems is to modify 
the problem. This heuristic is so general that it may not be of great 
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help unless we know how to modify the given problem after noting the 
characteristics of the problem. Survey of expert solutions to olympiad 
problems indicates several possible strategies within this heuristic. The 
first and the most common one is to solve a simpler but similar prob
lem. When the numbers in the problems are unnecessarily large, such as 
using the current year as a crucial number, then we may replace them by 
small numbers with little disturbance to the structure of the problem. In 
most of the cases, such a replacement will lead us to search for a pattern 
which can be generalised to provide a solution for the original problem 
with larger numbers. 

[IMO 1989] 
Prove that the set {1, 2, ... , 1989} can be expressed as the disjoint union 
of subsets Ai (i = 1, 2, ... , 117) such that 
(i) each ~ contains 17 elements, and 

(ii) the sum of all the elements in each Ai is the same. 

The number 1989 in this problem is not significant at all. We may 
replace it by any composite odd number which is the product of two 
moderately (compared to the product) large factors. We may replace 
1989 by 35, 117 by 5, and 17 by 7. Then we try to partition the simplified 
set {1, 2, ... , 35}. After some trials, we should be able to observe that the 
problem will be much easier if the number 1989 is replaced by an even 
number (such as 28) instead of an odd number like 35. After solving the 
more accessible related problem by replacing 1989 by 28, 117 by 4, 
and 17 by 7, we should try to build up our solution to the problem on 
{1, 2, ... , 35} upon some modification to the solution of the previous one 
while keeping as much of the pattern as possible. H we are through with 
35, then the case of 1989 is straightforward by analogy. The rest are just 
technical jargons to make the argument rigorous. 

The second common strategy of modifying the given problem is to 
restate the problem in an equivalent form which is easier to handle. 

[Kiirschak 1968-69] 
Prove that if every element, starting from the second one, of an infi
nite sequence of natural numbers is equal to the harmonic mean of its 
neighbours, then all the elements of the sequence are equal. 

After writing down the given condition using mathematical 
symbols, we should be aware that the problem can be restated in an 
alternative way which is more familiar to us: 
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Prove that if {a,.} is a sequence of natural numbers such that {1/a,.} 
is an arithmetic sequence, then all the a,. 's are equal. 

This simplified version should then enable us to solve the problem 
easily using simple properties of natural numbers. 

Some olympiad problems may be modified to enable them to be solved 
over wider domains or under stronger conditions than those given ones. 

[IMO 19'15] 
Let a1 , ~, a3 , ••• be an infinite increasing sequence of positive integers. 
Prove that for every p ~ 1 there are infinitely many am which can be 
written in the form 

with x, y positive integers and q > p. 

Here the four natural numbers are all undetermined, thus making the 
problem difficult because of the many degrees of freedom. We may, as a 
trial, fix the value of one of these four parameters. If we assign x = 1, 
then the problem is modified to a stronger one which is easier to handle: 

Prove that there are infinitely many am satisfying 

with p -=f q. 
This modified problem can be solved by using congruence classes and 

the given contraints. 
Symmetry in some olympiad problems also help us to solve the 

problems. Some problems, as in the following one, can be simplified by 
proving only one of the several symmetric conditions. 

[USA 19'14] 
Prove that if a, b and c are positive real ·numbers, then 

a+b+c 
aa bb cc ~ (abc) 3 

The inequality required, after rearrangement, is equivalent to 
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By symmetry, it suffices to prove that 

a-b 

(~)-3 ~1. 

We may also use symmetry to fix indeterminate factors in the prob
lem. 

[Kiirschak 1942-43] 
If a < b < c < d and (x, y, z, t) is a permutation of (a, b, c, d), how 
many different values can be attained by the expression 

n = (x- y) 2 + (y- z)2 + (z- t) 2 + (t- x)2
• 

Because of symmetry in the expression n + (x- z)2 + (y- t) 2
, we 

need only consider the expression (x- z)2 + (y- t) 2
, which equals 

x2 + y2 + z2 + t2 
- 2(xz + yt). 

The first part of this expression is also symmetric, so we need only consider 
the simple expression xz + yt. 

Methods of Proof 

There are several general methods of proof useful for olympiad prob
lems. More sophisticated approaches will be left to later sections. Since 
there are so many olympiad problems which are solved by the proof by 
contradiction, there is no need for me to give any example here. How
ever, I would like to generalise observations on olympiad problems which 
may be solved by using the proof by contradiction. A lot of these problems 
fall into one of the following two categories: 

1. The consequent in the proposition appears in the form of the nega
tion of a statement. 

2. Keywords such as 'at most', 'at least', unique', 'concurrent', 
'collinear', 'coplanar' appear in the consequent of the proposition. 
The next common method of proof for olympiad problems is the 

proof by exhaustion. Very often we have no better choice than list
ing all possible cases and proving each one of them or disproving each of 
the possible cases constituting the negation of the conclusion. 
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[China 1983] 
Among all tetrahedrons of lengths of sides 2, 9, 9, 4, 5, 5, which has 
the largest volume? Prove your assertion. 

The criterion for forming a tetrahedron is that the sides must form 
all the triangular faces of the tetrahedron. Since the difference of any 
two sides of a triangle must be less than the third side, let us focus on 
those triangular faces with a side of length 2. For these triangles, there are 
only four possible combinations for the two remaining sides. Furthermore, 
there can only be three possible cases for the two adjacent triangles with 
a common side of length 2. Find the volume for each of these three cases 
and compare with one another. 

Proof by induction is popular among olympiad problems and we 
can easily find a large number of examples to illustrate both simple in
duction and strong induction. However, for some olympiad problems, we 
must apply a more sophisticated version of induction - spiral induction: 

Let {Pn} and { Qn} be two sequences of propositions on natural num
bers n. H 

(i) P 1 is true, and 
(ii) for any natural number k, P~c is true => Q~c is true => Pic+ 1 is 

true, 
then Pn and Qn are true for every natural number n. 

Spiral induction can be regarded as a combination of simple induc
tion and strong induction. It can be extended easily to more than two 
sequences of propositions. 

[Putnam 1956] 
Consider a set of 2n points in space, n > 1. Suppose they are joined 
by at least n2 + 1 segments. Show that at least one triangle is formed. 
Show that for each n it is possible to have 2n points joined by n2 

segments without any triangles being formed. 

Let us denote the proposition in the first part of the problem by 
Pn and construct its partner Qn: if there are 2n - 1 (n ~ 2) points 
in space and these points are connected by n(n- 1) + 1 segments, then 
these segments form at least one triangle. Q1 is obviously true. The 
implications Q~c => P~c => Q~c+ 1 can be established naturally by removing 
the point joined by the least number (~ k) of segments in each case. The 
second part of the problem can be proved by dividing the 2n points into 
two sets of n points each such that any two points in different sets are 
joined by a segment while no points in the same set are joined. 

84 



In proving propositions, the importance of elements involved is often 
unbalanced. Some extremal elements possess properties not present in 
others. These properties may facilitate the solution of the problem. The 
following example demonstrates the use of extremal elements in problems 
on existence. 

[Poland 1975] 
A sequence {an} satisfies the following properties: 

There exists a natural number n such that 

and an+k = ak, k = 1,2, .... 
Prove that there exists a natural number N such that, for any k = 
1, 2, ... , 

N+k 
L ~;:::o. 
i=N 

Let 8; = a 1 +~+ ... +a; (j = 1,2, ... ). 
Note that 8pn = 0 (p = 1, 2, ... ) and 8n+i = 8; (j = 1, 2, ... ), which 

shows that there are finitely many terms in {8;}. Denote by 8m the 
least element among 81 , 82 , ••• , 8n. Show that N = m + 1 satisfies the 
requirement of the problem. 

The use of extremal elements also helps to prove some propositions 
by contradiction. 

[China 1988] 
If a1 = 1, ~ = 2, and 

prove that, for any natural number n, an =/: 0. 
After calculating the first few values of an , we should have noticed 

the pattern about parity of the terms: 
odd, even, odd, odd, even, odd, odd, even, odd, odd, ... 

Let m be the least value that am is zero. Then 

This shows that am- s, and hence am- 6, am- D' ••• , ~' will be multiples 
of 4. Since~ is not a multiple of 4, we have a contradiction. 
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Strategies on Counting 

Problems on counting are popular in every olympiad. Among the 
solutions to the numerous olympiad problems related to counting, four 
strategies are found to be most useful. The pigeonhole principle, which 
is so fundamental and widely known, is still very useful in solving olympiad 
problems. The following IMO problem illustrates how crucial the principle 
is in solving even problems not explicitly related to counting. 

(IMO 1987] 
Let x 1 , X:;~, ••• , Xn be real numbers satisfying 

X~ + X~ + ... + x! = 1. 

Prove that for every integer k ~ 2 there are integers a1 , ~, ••• ,an, not 
all zero, such that Ia, I ~ k - 1 for all i and 

The number of expressions of the form b1 x1 + b:;~ X:;~ + ... + bn Xn, where 
b1 , b:;~, ... , bn are integers such that 0 ~ b, ~ k - 1 for all i, is kn. Since 
the denominator of the R.H.S. of the inequality is kn - 1, we should try 
to prove that 

The expressions k" and kn - 1 hint us to use the pigeonhole principle to 
complete the proof. The sum of products in the inequality and the sum of 
squares in the problem suggest us to use Cauchy's inequality (and simple 
properties of absolute values). Finally, we divide the interval [0, (k-1)y'n] 
into kn - 1 parts of equal widths and then apply the pigeonhole principle 
to the kn expressions. Set a, to be the difference of the coefficients of x, 
in the two 'pigeons' in the same hole and we are through. 

The second useful tool in counting is the inclusion-exclusion prin
ciple, which states that 

IA1 U A:;~ U ••• U An I 
= L lA. I - L lA. n A; I + L lA. n A; n A~; I - ... 

+(-1t- 1 1Al nA:;~ n ... nAnl· 
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[Poland 1968] 
Let Z be a set of n(> 3) points on a plane. No three of the points are 
collinear. If every point in Z is connected byline segments to at least 
k points in Z, where n/2 < k < n, prove that these line segments 
form at least one triangle. 

Let AB be one of the line segments. Denote by S and T respectively 
the sets {points in Z which are connected to A}\ {B} and {points in 
Z which are connected to B} \{A}. The proposition is equivalent to 
ISnTI >0. 

The third principle is not as well-known as the previous two but it is 
very useful in solving some olympiad problems on counting. This principle 
is named after Fubini and may be stated in different versions, one of which 
is as follows: 

Let A= {a1 ,~, ... ,am} and B = {b1 ,b2 , ... ,bn}· H S C A X B, then 

m B 

lSI= L IS(Gj,•) I= L IS(•,b;) I· 
i= 1 ;= 1 

In applying the Fubini principle to solve olympiad problems, the sets A, 
B and S must be constructed by the solver using the given conditions in 
the problem. The construction of S is most crucial and is a decision on a 
rule of matching elements of A and B. 

[Moscow 1960] 
There are m points on a plane. Some of the points are connected 
by line segments. Each point is connected to exactly l line segments. 
Find the possible values ofl. 

Let {a1 ,~, ... ,am} be the set of them points and {b1 ,b2 , ... ,bn} be 
the set of then line segments. Apply the Fubini principle to the set of all 
ordered pairs (a,,b,.) such that a, is an endpoint of b,-. Note that l < m. 

It is often a formidable task to count the number of elements in a set 
in usual ways. H we can establish a one-one correspondence between 
this set and another set such that the number of elements in the other set 
can be counted easily, then the problem can be solved. 

[Putnam 1956] 
Given n obiects arranged in a row. A subset of these obiects is called 
unfriendly if no two of its elements are consecutive. Show that the 
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number of unfriendly subsets each having k elements is 

Let the row of objects be A(1), A(2), ... , A(n). Denote by {A( it), A(i2 ), 

... ,A(i~;)} (it < i2 < ... < i~;) an unfriendly subset. The sequence it,i2 -

1, is- 2, ... , i~;- (k -1) is obviously a sub-sequence of 1, 2, 3, ... , n- (k -1). 
Conversely, for every sub-sequence it ,J~, ... ,i~;, the set {A(it), A(i2 + 
1),A(i3 + 2), ... ,A(i~; + (k- 1)} is unfriendly. Hence we have established 
a one-one correspondence between the set of unfriendly k-element subsets 
and the set of k-term sub-sequences of 1, 2, 3, ... , n - k + 1. 

In this solution, we transform the counting of elements under con
straints to the counting of elements in another set, under no contraints, 
through one-one correspondence. 

Synthesis versus Analysis 

In proving inequalities, two basic approaches exist: synthesis and 
analysis. These two approaches are not exhaustive but serve the purpose 
of attacking a wide range of inequalities in olympiad problems. H we follow 
the synthetic approach, then we start from given conditions and well
known inequalities to deduce the required inequality using basic properties 
of inequalities. 

[China 1989] 
Let Zt, z2 , ... , z,. ( n ~ 2) be positive numbers such that 

" I:z, = 1, 
i=t 

prove that 
" " E~ I: z, > •=1 . 

y'1 - z. - v'n- 1 •= t • 

Our task will be easier if we can separate the z, 's in the numerator 
and the denominator of the summand at the L.H.S. After some trials, we 
can arrive at 

-;:;:=z=' =- 1 - y1- z,. 
y1 - z, y1 - z, 
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As we must get rid of the square roots in order to use the given 
condition, we may try to build up the following inequalities by repeated 
application of Cauchy's inequality together with the given constraint: 

(t. v'l-z,y ~n(n-1), 
(

.. ) .. 1 E v'1-x, E 
•=1 t=1 v'l- x, 

and 

(t. ~r ~n. 
Whereas the synthetic approach proceeds from given conditions and 

established inequalities to prove the required inequality, the analytic ap
proach is somehow the reverse - by investigating the required inequality 
to find out conditions for its validity until we arrive at some established 
inequalities. However, in using the analytic approach, we must ensure 
that every step in the deduction is reversible so that each intermediate 
inequality is a sufficient condition for the validity of the preceeding one. 

[West Germany 198'1) 
Let k and n be natural numbers such that 1 ~ k ~ n. If x 1 , x~, ... ,X~; 
are k positive numbers with their product equal to their sum, prove 
that 

n-1+n-1+ +"-1>k x1 x~ ... X~; _ n. 

Determine a necessary and sufficient condition for the equality to 
hold. 
Let us denote x1 + x~ + ... + X~; and x1 x~ ... x~; by T. By using the 

A.M.-G.M. inequality, we obtain 

n-1 + n-1 + + n-1 > kT~ X 1 X~ ••• X~; _ • 

So it suffices to prove that 

.!L:....l. 
kT • ~ n. 
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Since it is given that the sum of the x, 's is the same as their product, we 
are prompted to try the A.M.-G.M. inequality once again, but on T this 
time: 

T l. 
->T" k-

ll..:..l. ll..:..l. 
¢> T " ~ k"- 1

• 

Hence it suffices to prove that 

which is equivalent to 

.!l..::...l. 
k~c-1 > n 

- ' 

A.:..l. 
k~n ... -1. 

This last inequality is exactly the A.M.-G.M. inequality for (k -1) n's and 
(n- k) 1's. 

Global View versus Partial Attack 

Some olympiad problems comprise several parts with similar prop
erties. In such cases, we may try to attack a representative part and 
then generalise to a global solution. This approach is particularly useful 
for problems with additive features such as length, area, counting and 
inequality. 

[China 1986] 
Can we arrange two 1 's, two 2 's, ... , two 1986's in a sequence so that 
there are exactly i numbers between any two i 's (i = 1, 2, ... , 1986)? 

Consider the relative positions of two elements a and b (each used 
twice) first. Observe that in every arrangement, there is always an even 
number of elements sandwiched between another pair of identical num
bers. This partial property can be generalised to all the numbers under 
consideration. On the other hand, since there must be exactly i numbers 
between any two i's, the total number of elements sandwiched between 
pairs of identical elements is 1 + 2 + 3 + ... + 1986, which is odd and hence 
we obtain a contradiction. 

The targets in some olympiad problems are actually parts of more 
general ones. Proposers of these problems may have picked out these 
parts for the sake of hidding some nice properties of the general situation 
as well as breaking the links between individual parts. Thus the problem 
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becomes more difficult. We may try to generalize the given problem and 
then solve the more general problem, which is sometimes easier. Let us 
try the next example. 

(USA 1975] 
If P(x) denotes a polynomial of degree n such that P(k) = k/(k + 1) 
for k = 0, 1, 2, ... , n, determine P(n + 1). 

Construct another polynomial, based on P(x), with 0, 1, 2, ... , n as 
its zeros. Use factorisation and substitution to determine the leading 
coefficient of this polynomial. In this problem, we generalise from the 
narrow target to searching for the polynomial and then return to the 
target by simple substitution. 

Recurrence Relations 

The use of recurrence relations is a common and important method 
of solving olympiad problems with natural numbers as parameters. The 
crucial step in this method is the construction of recurrence relations in 
the form of equalities or inequalities. For some problems it may be helpful 
to build up new and more useful recurrence relations even though some 
recurrence relations are given by the problems. We illustrate two common 
situations each with an example. The first one is solved by constructing 
a recurrence relation through the general term of a sequence. 

(IMO 1972] 
Let m and n be arbitrary non-negative integers. Prove that 

is an integer. 

(2m)!(2n)! 
m!n!(m+n)! 

Let am ,n be the given expression. Establish a recurrence relation 
among am,n, am -t,n+ 1 and am -t,n. Then use induction. 

The next example illustrates the construction of recurrence relations 
through undetermined coefficients. 
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[Austria 1983] 
A sequence { Xn} is defined by x1 = 2, x2 = 3, 

X2m+l = X2m + X2m-l 

and X2m = X2m-1 + 2X2m-2 

Determine Xn as a function of n. 

(m ~ 1) 
(m ~ 2). 

Let X2m+l +ax2m = b(x2m-l +ax2 m- 2 ) where a and bare to be de
termined by substitution and comparison with the given relations. x2 m + 1 

and x2 m can then be found by substitution and elimination. 

Using the Binary System 

Some olympiad problems are explicitly or implicitly related to the 
integer 2. The use of binary system in these problems often gives easier 
and simpler solutions. Let us first investigate the use of binary system in 
a problem on divisibility. 

n! is 

[Canada 1985] 
Prove that 2"- 1 divides n! if and only if n = 2k-l for some positive 
integer k. 

Note that if pis a prime number, then the highest power of p dividing 

t[~]· 
i=l p 

The 'only if' part is straightforward. For the 'if' part, let n = ( a 1 ~ •• • am h 
where a 1 = 1. Then 

[ ;.] = (a,a, ... a,.), (i = 1,2, ... , m- 1). 

Since 2k- 1 Jn! if 

~ [~] >n-1 L- 2• - , 
i= 1 

we then try to show that this inequality is equivalent to~ + a3 + 
... +am~ 0. 
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Expressing numbers in base 2 may also facilitate the solutions of 
equations related to powers of 2 in olympiad problems. 

[Canada 1981] 
Show that the equation 

[x] + [2x] + [4x] + [8x] + [16x] + [32x] = 12345 

has no real solution. 

Initial investigation will lead to the bounds 195 < x < 196. Let 
{ x} = (O.abcde ... ):a. Show that the given equation has real solution if and 
only if 31a + 15b + 7 c + 3d + e = 60, which is impossible since a, b, c, d 
and e are either 0 or 1. 

The use of binary system may also help us in evaluating sums involv
ing powers of 2. 

[IMO 1968] 
For everf1 natural number n, evaluate the sum 

Let n = (am am_ 1 ... a1 ao):a. Show that, fork= 0, 1, 2, ... , m- 1, 

[ 
n + 2k ] 2m- k- 1 + 2m- k- :3 + 2k+1 =am am-1 ... 

and 

Binary numbers are also the tool for solving some problems on recur
rence relations which rely on powers of 2. 

(IMO 1988] 
A function I is defined on the positive integers bfl 

/(1) = 1, /(3) = 3, /(2n) = f(n), 

f(4n + 1) = 2/(2n + 1)- f(n), 

f(4n + 3) = 3/(2n + 1)- 2/(n) 
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for all positive integers n. Determine the number of positive integers 
n, less than or equal to 1988, for which f(n) = n. 

As the definition of f(n) relies on powers of 2, tabulation of n and 
f ( n) in base 2 will uncover the pattern. The conjecture can then be proved 
by induction. Note that f(n) = n if and only if n is a binary palindrome. 

The Method of Infinite Descent 

In recent olympiads, particularly at the IMO, there were problems 
which could be solved by the method of infinite descent. This method may 
be regarded as a combination of induction with proof by contradiction. 
The history of this method dated back to the 17th century when Fermat 
used it to prove that the equation x" + y" = z" has no non-trivial integral 
solutions. We shall use some recent IMO problems to demonstrate the 
different approaches in applying this method. 

1. Least Element Approach 

This strategy is based on the Well-Ordering Principle: 
Every non-empty set of natural numbers has a unique least ele
ment. 

[IMO 198'1] 
Let n be an integer greater than or equal to 2. Prove that if k2 + k + n 
is prime for all integers n such that 0 ::5 k ::5 vrnfij, then k2 + k + n 
is prime for all integers k such that 0 ::5 k ::5 n - 2. 

Let A = {0, 1, 2, ... , n- 2} and B = {x E A : vrnf3} < x < n- 2 
and x2 + x + n is a composite}. The problem is equivalent to showing 
that B is empty. Suppose B is non-empty. Denote its least element by 
m. We have m 2 + m + n = pq for some natural numbers p and q such 
that 1 < p ::5 q. Using this assumption and the given conditions, we can 
easily deduce that p < 2m and p < n. Let t = lm- PI(< m). Then, 
corresponding to the cases p < m and m < p < 2m, we can deduce that 
t2 + t +nand (t- 1)2 + (t- 1) + n respectively belong to Band are thus 
composite. This contradicts the assumption that m is the least element 
of B. 
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2. Functional Value Approach 

Some olympiad problems required us to prove the validity of a propo
sition on a set of n-tuples of natural numbers. For this class of problems, a 
useful strategy is to construct a suitable function from the set the n-tuples 
to the set of all natural numbers. The range of the function becomes a set 
of natural numbers for applying the least element approach. The solution, 
for which a special prize was awarded, submitted by a Bulgarian girl to 
one of the most difficult IMO problems exemplifies this strategy: 

set 

[IMO 1988) 
Let a and b be positive integers such that ab + 1 divides a2 + b2. Show 
that 

is the square of an integer. 

Let A= {(a, b): a,b E 1N,a ~band ab + 1la2 + b2
} and denote the 

a2 + b2 
{ (a, b) E A : b is not the square of an integer} 

a + 1 

by B. If B is non-empty, then we may define a function f : B -+ 1N by 
f(a,b) =a+ band let f(ao,bo) be the least element of /[B]. If q is not 
the square of an integer, then 

x2 + b2 
xb+ 1 = q 

{:} x 2 
- qbx + b2 

- q = 0 

Using the relations between roots and coefficients, we can deduce that, 
in addition to ( ao, bo), there is another solution ( a 1 , b0 ) of (*) such that 
a 1 + bo < ao + bo. This contradicts our assumption. 

3. Set Contraction Approach 

In olympiad problems we are often given a finite set (Ao, say) and 
we are required to prove that a proposition P is true for every element of 
Ao. For some of these problems, there exists a proper subset A1 of Ao 
such that if Pis true for every element of A1 , then P will be true for every 
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element of Ao. Furthermore, these problems also possess the nice property 
that ( Ao, A1 ) in the foregoing statement can be extended to ( A1 , A2 ) and 
so on. This process generates a sequence of sets: 

Since Ao is finite and the number of elements in the subsets in this sequence 
is strictly decreasing, for some An with only a few elements it should be 
easy for us to prove that P is true for every element in An . 

[IMO 1985] 
Let n and k be given relatively prime natural numbers, k < n. Each 
number in the set M = {1, 2, ... , n-1} is coloured either blue or white. 
It is given that 
(i) for each i EM, both i and n- i have the same colour; 

(ii) for each i EM, i 'I k, both i and li- kl have the same colour. 
Prove that all elements in M must have the same colour. 

Denote by x '""" y if x and y have the same colour. Use the given 
conditions to show that, for each i ~ k, i ""' x for some x E M 1 = 
{1, 2, ... , k- 1}. Let r be the remainder when n is divided by k. Then 
r and k are also relatively prime. Verify that the given conditions still 
hold when nand k are replaced respectively by k and r. The process can 
be continued for smaller and smaller subsets M2 , M3 , ••• until we arrive at 
some M; = {1, 2, ... , n;- 1} and k; = 1, for which it is straightforward to 
prove that the proposition is true. 

4. Index Function Approach 

Some olympiad problems required us to prove that an operation can 
only be repeated finitely many times. We may correspond each round of 
the operation with a positive integral-valued function constructed ap
propriately on the variables related to the operation so that the functional 
value decreases with each round of the operation. Since the initial value 
is finite, this process cannot be continued indefinitely. 

[IMO 1986] 
To each vertex of a regular polygon an integer is assigned in such a way 
that the sum of all the five numbers is positive. If three consecutive 
vertices are assigned the numbers x, y, z respectively andy < 0, then 
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the following operation is allowed: the numbers x, y, z are replaced 
by x + y, -y, z + y respectively. Such an operation is performed 
repeatedly as long as at least one of the five numbers is negative. 
Determine whether this procedure necessarily comes to an end after a 
finite number of steps. 

Let x1 , x2, x3, x4, x5, in this order, be the five numbers at the vertices. 
Construct the function 

f(xl,x2,xs,x4,x5) 

= (x1 - xs)2 + (x2 - x4)2 + (xs - x5)2 

+ (x4 - xt)2 + (x5 - x2)2. 

This pilot study revealed that, for problems at olympiad level, while 
heuristics suggested by Polya are useful in analysing the problems and in 
exploring feasible solutions, most of the more effective strategies are topic
oriented. Olympiad problems in geometry are almost excluded from this 
report because although common strategies for solving them do exist, such 
as expressing quantities in terms of areas of triangles, they are confined 
to geometry. Possible directions for research include studies on problem
solving strategies for individual areas of olympiad mathematics: Euclidean 
geometry, algebra, number theory and combinatorics, studies on the as
pect of control, and studies on teaching students how to solve olympiad 
problems. These studies will be facilitated if more experts publish their 
experience in solving olympiad problems. Expert solutions are very useful 
but a cruicial question is: 'How can you think of such a solution?' 
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