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Introduction 
As a branch of mathematics, combinatorics is becoming 

increasingly important and lively. Combinatorial problems and 

their applications can be found not only in various branches of 

mathematics, but also in other disciplines such as sciences, 

operational research, statistics, management science, etc. 

Combinatorial techniques have also become powerful and 

essential tools for computer scientists. One of the general 

problems that combinatorics deals with is counting. Problems 

that have to do with counting occur everywhere, not only in 

advanced researches, but also in our everyday life. It would thus 

be useful for us to be familiar with some basic knowledge about 

counting. In this series of articles, we shall introduce a wide 

range of elementary counting problems. Some basic principles 

and efficient techniques used to solve the problems will also be 

discussed. 

COUNTING 
Its Principles and Techniques ( 1) 
by K M Koh and B P Tan 



1. The Addition Principle 

We first begin with two basic principles: the Addition Principle 

in this section and the Multiplication Principle in the next section. 

We shall illustrate by examples how these principles are applied 
in the process of counting. 

Consider a 4-element set A = {a, b, c, d). In how many ways 
can we form a 2-element subset of A? This can be answered 

easily by simply listing all the 2-element subsets: 

{a, b), {a, c), {a, d), {b, c), lb, d), {c, d). 

The answer is '6'. 

Let us try a slightly more complicated problem. 

Example 1.1 

A group of students consists of 3 boys and 4 girls. How many 
ways are there to form a pair of students of the same sex from 

the group? 

Naturally, we divided our consideration into two cases: both of 

the students in a pair are boys, or both are girls. Assume that the 

3 boys are b
1

, b2 and b
3

• Then there are 3 ways to form such 

a pair; namely, 

Suppose the 4 girls are g
1

, g2, g
3 

and g4. Then there are 6 ways 

to form such a pair; namely, 

{gl 1 g), {gl 1 g), (gl 1 g4), {g21 g), {g21 g4), {gJ I g4}. 

Thus the desired number of ways is equal to 3 + 6 = 9. 

In dealing with the counting problems, quite often, we have to 
divide our consideration into cases which are disjoint (like boys 

or girls in Example 1.1) and exhaustic (besides boys or girls, no 
other cases remain). Then the total number of ways would be the 

sum of the numbers of ways in the cases. More precisely, we 

have: 

The Addition Principle 
Suppose that there are n

1 
ways for 

the event f
1 

to occur and n
2 

ways 

for the event f
2 

to occur. If all these 
ways are pairwise distinct, then the 

number of ways for f
1 
or E

2 
to occur 

is n
1 

+ n
2

• 

For a finite set A, let I A I denote the number of elements in A. 

Thus I {a, b, c) I = 3 while 101 = 0, where 0 denotes the empty 
set. Using the language of sets, then the Addition Principle simply 

says that: 

If A and 8 are finite sets such that A n 8 = 0, then 

IAu 81 = IAI + 181. 

Clearly, the above result can be extended in a natural way to any 
finite number of pairwise disjoint finite sets. 

(AP) If A
1
, A

2
, •• • , An, n ::=: 2, are finite sets which are pairwise 

disjoint; i.e., A; n Ai = 0 for all i, j with 1 s; i < j s; n, then 

or in a more concise form: 

IvAI=± I AI. 
i=J I i=f I 

Example 1.2 

Find the number of squares contained in the 4 x 4 chessboard 

of Figure 1.1 

Figure 1.1 

The squares in the chessboard can be divided into the following 

4 sets: 
A

1
: the set of 1 x 1 squares, 

A
2

: the set of 2 x 2 squares, 

A
3

: the set of 3 x 3 squares, and 

A
4

: the set of 4 x 4 squares. 

There are 16 1 x 1 squares. Thus I A
1 
I 

2 x 2 squares. Thus I A
2

1 = 9. 
Likewise, 

IA3 I = 4 and lA) = 1. 

16. There are 9 

Clearly, the sets A
1

, A
2

, Ay A
4 

are pairwise disjoint and A
1 
u A

2 

u A
3 
u A

4 
is the set of the squares contained in the diagram of 

Figure 1.1. Thus by (AP), the desired number of squares is given 

by 

I~AI = t IAI= 16 + 9 + 4 + 1 = 30. 
i= 1 I i= 1 I 

Problem 1.1 
Do the same problem as in Example 1.1 for 1 x 1, 2 x 2, 3 x 

3 and 5 x 5 chessboards. Observe the patterns of your results. 

Find in general the number of squares contained in an n x n 

chessboard, where n ::::? 2. 

Problem 1.2 
Find the number of triangles contained in the configuration of 

Figure 1.2. 

Figure 1.2 
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Problem 1.3 
Find the number of squares contained in the configuration of 
Figure 1.3. 

Figure 1.3 

2. The Multiplication Principle 

In Example 1.1, we found the number of ways to form a pair of 

students of the same sex from a group of 3 boys and 4 girls. If 

we wish to find the number of ways to form a pair of students 

of different sex from the same group, then, by listing all possible 

pairs as shown below: 

lb, I g,} I lb , I g) I lb , I gJ} I lb, I g4}, 
lb2 I g,} I {b2 I g2} I lb2 I gJ} I lb2 I g4}, 
lbJ I g,} I lbJ I g) I lbJ I g) I lbJ I g4}, 

we get the answer '3 x 4' or '12' . In forming a pair of boy and 

girl, we may first select a boy and then select a girl. These two 

selections are independent. There are 3 ways for the first event 

to occur and 4 ways for the second event to occur. Thus the 

answer is '3 x 4' . 

Very often, a given event may be split into ordered stages ((a boy) 

first and then (a girl)). In this case, the desired number of ways 

that the given event can occur is equal to the product of the 

numbers of ways in the respective stages. This way of counting 

is justified by the following : 

The Multiplication Principle 
Suppose that an event E can be split 

into two events £, and E
2 

in ordered 

stages. If there are n1 ways for £1 to 

occur and n
2 

ways for E2 to occur, 

the number of ways for the event E 
to occur is n

1
n

2 
(see Figure 2.1 ). 

~ ~ 

~~ 
o~~-__/o~d 

E 

E : forming' a pair of boy and girl 

E, : selecting a boy 

E
2

: selecting a girl 

Figure 2.1 

Given two sets A and 8, let 

A x 8 = {(a, b) I a E A, bE 8} 

Then the Multiplication Principle simply says that: 

For any two finite set A and 8, 

lAx 81 = IAI x 181 . 

Likewise, the above result can be extended in a natural way 

when the event E is split into any finite number of ordered stages. 

Example 2.1 

There are four 2-digit binary sequences: 00, 01, 10, 11. There are 
eight 3-digit binary sequences: 0001 001, 010, 011, 100, 101, 
110, 111. How many 6-digit binary sequences can we form? 

The event of forming a 6-digit binary sequence can be split into 

6 ordered stages as shown in Figure 2.2 . 

0 0 0 0 0 0 

Figure 2.2 

Thus by the Multiplication Principle, the desired number of 

sequences is 2 x 2 x 2 x 2 x 2 x 2 = 26
• 

Let A
1

, A
2

, • • • 1 An, n > 2, be n finite sets and 

let A, x A2 x . . x An = {(a, a21 ••• I a) I a; E A; 
for each i = 11 2, . . . , n} . 

Then the general form of the Multiplication Principle, using the 

language of sets, may be stated as follows: 

(MP) 

For instance, consider the problem discussed in Example 2.1, we 

have 

A, = A
2 

= ... = A
6 

= {0, 1}. 

The elements in A, x A
2 

x ... x A
6 

can be identified with the 



6-digit binary sequences in the· following: 

(1, 1, 0, 1, 0, 1) f-~ 110101 

(0, 1, 1, 1, 0, 0) f-~ 011100 

Thus the number of 6-digit binary sequences is equal to 

I A
7 

x A
2 

x . .. x A
6
l, which by (MP), is equal to 

I All X I All X . • . X I A61 = 2 X 2 X 2 X 2 X 2 X 2 = 26
• 

We have seen in the preceding examples how (AP) or (MP) can 
be applied individually. These two principles become much more 

powerful tools if they are suitably combined. 

Example 2.2 
Figure 2.3 shows eight distinct points a

1
, a

2 1 b
7

, b
2

, b
3 1 c

1
, c

2
, 

c
3 

chosen from the sides of MBC. How many triangles can be 
formed using these points as the vertices? 

A 

Figure 2.3 

As shown in Figure 2.3, we notice that such triangles are of two 
types: (1) one vertex from each side (such as a

2 
b

2 
c), (2) two 

vertices from a side and one vertex from another side (such as 

b3c1c). 

The number of triangles of types (1) is, by (MP), 2 x 3 x 3 = 18. 
The number of triangles of type (2) is, by (AP) and (MP), 

1 (3 + 3) + 3(3 + 2) + 3(2 + 3) = 36. 
i i i 

lb)l b) 
lb)l b) 
{b21 b) 

k 7 , C2 ) 

k 7 , c) 
{c

2
, c) 

Thus by (AP), the desired number of triangles is equal to 

18 + 36; i.e., 54. 

Problem 2.1 

There are 2 distinct terms in the expansion of a(p + q): 

a(p + q) = ap + aq. 

There are 4 distinct terms in the expansion of (a + b)(p + q): 

(a+ b)(p + q) = ap + aq + bp + bq. 

How to divide? 

How can you divide a cake between two people so that each 

is satisfied that he/she has at least half the cake?. Can you 

devise a procedure to share a cake between 3 people so that 

each is satisfied that he/she has at least one-third of the cake? 

How many distinct terms are there in the expansion of 

(i) (a + b + c + d )( p + q + r + s + t ), 
(ii) (x

7 
+ x

2
+ .. . + x) (y

1 
+ y

2
+ . . . + y), and 

(iii)(x
7
+ x

2
+ . .. + x) (y

1
+ y

2
+ .. . + y)(z

1
+ z

2
+ .. + zk)? 

Problem 2.2 
A 3 x 2 rectangle can be covered by 2 x 1 rectangles in 3 

different ways as shown below: 

In how many different ways can the following configuration be 

covered by 2 x 1 rectangles? 

(See Singapore Math. Olympiad for Primary Schools, 1994) 

3. Divisors of Natural Numbers 

In this section, we shall study two counting problems related to 
the divisors of natural numbers. For convenience, we denote by 

IN= {1 , 2, 3, .. . } 

the set of all natural numbers. 
Assume that d, n E IN. We say that d is a divisor of n if when 

n is divided by d, the remainder is zero. Thus 3 is a divisor of 

12, 5 is a divisor of 100, but 2 is not a divisor of 9. 

Let n E IN, n ~ 2. Clearly n has at least two divisors, namely 1 

and n. How many divisors (inclusive of 1 and n) does n have? 

This is a type of problems that can often be found in mathematical 

competitions. We shall tackle this problem and see also how 
(MP) can be used in the solution. 

To understand the solution, we first recall a special type of 

numbers, called prime numbers, and state an important result 

relating natural numbers and prime numbers. 

A natural number p is said to be prime (or called a prime) if 

p ~ 2 and the o~ly divisors of pare 1 and p. All prime numbers 

less than 1 00 are shown below: 

2, 3, 5, 7, 11 , 13, 17, 19, 23, 29, 31 , 37, 41 , 43, 47, 53, 59, 

61 , 67, 71 , 73, 79, 83, 89, 97. 

The primes are often referred to as building blocks of numbers 

because every natural number can always be expressed uniquely 

as a product of some primes. For example, 

72 = 23 X Y · 
1620 = 22 X 34 X 5, 

3146 = 2 X 1 J2 X 13 

12600 = 23 x 32 x 52 x 7. 
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This fact is so basic and important to the study of numbers that 
it is called the Fundamental Theorem of Arithmetic (FTA). 

FTA. Every natural number n ~ 2 can be factorized as 

for some primes p1, p2, ... , pk which are pairwise distinct 

and some natural numbers m
7

, m2 , ... , mk. Such a 
factorisation is unique if the order of primes is disregarded. 

The FTA was first studied by the Greek mathematician Euclid (c. 

450- 3808. C.) in the case where the number of primes is at most 

4. It was the German mathematician C. F. Gauss (1777 - 1855), 

known as the Prince of Mathematicians, who stated and proved 
the full result in 1801. 

Let us now return to the problem of counting the number of 

divisors on n. How many divisors does '72' have? Since '72' is 

not a big number, we can get the answer simply by listing all 
divisors of 72: 

1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72. 

Thus '72' has exactly 12 divisors. 

The above way of counting the number of divisors of n by listing 

all divisors of n would be very 'stupid' if n is sufficiently large. 
Is there a simpler way to get the answer? 

Let us look at the example when n = 72 again. 
Observe that 72 = 23 x Y. Thus by FTA, a number is a divisor 
of '72' if and only if it is of the form 2x x 3Y, where x, yare integers 

such that 0 :":: x :":: 3 and 0 :":: y :":: 2. Indeed, we have 

1 = 2° X 3°, 
2 = 21 

X 3°, 

3 = 2° X 31
, 

4 = 22 X 3°, 
6 = 21 X 31, 
8 = 23 x 3°, 

9 = 2° X 32
, 

12=22 x31 

18 = 21 X Y, 
24 = 23 X 31, 

36 = 22 X Y, 
72 = 23 

X 32 

This observation suggests that the number of divisors of '72' is 
closely related to the numbers of choices of x and y. As a matter 

of fact, since x has 3 + 1 choices (i.e., 0, 1, 2, 3) and y has 
2 + 1 choices (i.e., 0, 1, 2), it follows by (MP) that the number 
of integers of the form 2x x 3Y where 0 :":: x :":: 3 and 0 :":: y :":: 2, 

and hence the number of divisors of '72', is given by 
(3 + 1 )(2+ 1) = 12, which agrees with the above listing. 

Example 3.1 
Find the number of divisors of 12600. 

Observe that 12600 = 23 x Y x 52 x 71. 

Thus a number is a divisor of 12600 of and only if it is of the form 

2a X 3b X 5c X 7d 

where a, b, c, d are integers 

such that 0 :":: a :":: 3, 0 :":: b :":: 2, 0 :::; c :":: 2 and 0 :":: d :":: 1. 

Since a has 3 + 1 choices, b and c each has 2 + 1 choices and 

d has 1 + 1 choices, 

111:11 M athemaNcal 
~ EDLEY 

the number of divisors of 12600 is, by (MP), 

(3 + 1 )(2 + 1 )(2 + 1 )(1 + 1) = 72 

Using a similar argument, it can be shown in general the following 

result. 

If n = pm1 pm2 ... pmk, as stated in FTA, 

then the
7 
nufnber of divisors of n is given by 

(m
1 

+ 1)(m
2 

+ 1) .. (mk + 1). 

Consider another problem about divisors. If we sum up the 12 

divisors of 72, we get 

1 + 2 + 3 + 4 + 6 + 8 + 9 + 12 + 18 + 24 + 36 + 72 = 195. 

The question is :can we get the sum without knowing the divisors 

of 72? 

Let us do the above summation in the following way: 

1 +2+3+4+6+ ... +72 

= 2030 + 2130 + 2031 + 2230 + 2131 + 
2330 + 2032 + 2231 + 2132 + 2331 + 

22Y + 2332 

= (2° + 21 + 22 + 23) X 3° + 
(20 + 21 + 22 + 23) X 31 + 

(20 + 21 + 22 + 23) X }2 

= (2o + 21 + 22 + 23)(3o + 31 +Y). 

Observe that 2° + 21 + 22 + 23 is a geometric series with 3 + 1 

terms where 3 is the power of 2 in 72 = 22 x Y; 
and 3° + 31 + Y is a geometric series with 2 + 1 terms where 
2 is the power of 3 in 72 = 23 x 32. 



With the help of the following formula for the sum of 

a geometric series: 

rn+1 - 1 
r 0 + r 7 + r2 + . . . + r" = --1-r -

we see that the sum of the divisors of 72 is 

(20 + 21 + 22 + 23)(30 + 31 + 32) 

=~X~ 
2-1 3-1 

= 15 X 13 

= 195 

which agrees with what we got before. 

In general, we have the following result: 

If n = pm1 pm2 ... pmk as stated in FTA, then the sum 
1 2 k 

of the divisors of n is given by 

Example 3.2 
Find the sum of the divisors of 12600 

Since 12600 = 23 x Y x 52 x 71, the desired sum is 

equal to 

Problem 3.1 

24 
- 1 33 - 1 53 - 1 72 - 1 

- - X-- X-- X--
2-1 3-1 5-1 7-1 

= 15 X 13 X 31 X 8 

= 48360 

Find the number of divisors and the sum of the divisors 

of (i) 96, (ii) 1620. 

Problem 3.2 
We have shown that the number of divisors of 72 is 

12. Are there any other 2-digit numbers which have 

exactly 12 divisors? Find out all such 2-digit numbers. M' 
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