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Most readers of this article have come across the term "ca lculus", perhaps in secondary school. Even 

those who have not reached the stage of studying it have probably heard about it. While certain 

fundamental ideas of calculus were already fermenting in the pioneering works of ancient Eastern and 

Western mathematicians, as a systematic discipline, calculus has a history of just over three centuries. 

This article is not about the development of calculus in the last three hundred years, but is the story of 

its birth. 

Nomenclature 

The term "calcu lus" is derived from the Latin word meaning "stone". It refers to calculation which, in 

ancient Europe, was facilitated by stones. Nowadays, the medical term "a calculous man" refers to a 

patient with kidney stones and not an expert of calculus. 

In a way, the terminology is appropriate, as calculus was invented as a powerful tool in mathematical 

calcu lations. On the other hand, the name carries the misleading connotation that calculus is just 

concerned with mechanical computations. This is furthest from the truth. Calculus is one of the greatest 

achievements, not only in the history of mathematics, but in all of human civilization, with far-reaching 

consequences in science, technology and philosophy. Today, calculus is an indispensible mathematical 

tool in many fields, including not only the physical sciences, material sciences and engineering, but also 

the biological sciences, social sciences and business administration. 

Two major historic triumphs of calculus are well-known to all, but nevertheless worth repeating. First, 

in the mid-17th century, Newton used his newly formulated calculus to expound his theory of mechanics, 

which explained the movements of the heavenly bodies. This work opened a new chapter in the 

investigation of the physical universe. Obviously impressed by this important work, the 18th century 

poet Pope wrote: 

Nature and nature's laws 

lay hid in night, 
Cod said, "Let Newton be", 

and all was light. 

Second, in the mid-19th century, Maxwell gave the theory of electromagnetism a mathematical treatment 

and summarized it in the famous Maxwell (differential) equations. In this work, the existence of 

electromagnetic waves was predicted, leading to their discovery by the experimental scientist Hertz in 

twenty years' time. The potential of electromagnetic waves was finally realized when Marconi invented 

wireless communication thirteen years later. 

The Chinese terminology for calculus (weijifen) first appeared in 1859 in a translation of Analytic 
Geometry and Calculus (written by the American mathematician Loomis in 1850) by Li Shanlan and the 

Englishman Wylie. In the preface, Li wrote "This book deals first with algebra (meaning analytic 

geometry, known as algebraic geometry at the time) and subsequently differential and then integral 



calculus, following the order of complexity of the topics, like climbing a staircase. Hence we have given the book 

the title Oai Wei }i Shi }i (algebra, differential and integral calculus in ascending steps)." He continued thus "During 

the time of the Emperor Kangxi, in the West, Leibniz and Newton invented the arts of differentia l and integral calculus 

... which are based on the principle that all planar figures are built up from small to large. Every instantaneous 

increment in area is called a differential (wei fen), and the total area is called an integral (ji fen)." This is the origin 

of the Ch inese terminology. 

Volume Calculations in Ancient Greece 

Calculations of areas and vo lumes have appeared in ancient Eastern and Western mathematical literature going back 

thousands of years, but it was not until the 4th and 3rd centuries BC when such formulae were given mathematical 

proofs in Greece. The foremost contributor in this enterprise was Archimedes, who lived in the 3rd century BC. His 

deductive reasoning is considered rigorous even by today's standards. However, his greatness lies in his ingenious 

usage of intuition and conjectures, and application of other fields to establish deep results in mathematics. 

To establish his area formu lae, he used the method of "exhaustion", which was based on the work of the Greek 

mathematician Eudoxus who lived one century before him. Eudoxus observed that if a magnitude was reduced by 

at least half, and the remainder reduced by at least half, and so on, the remainder could be made arbitrarily small 

after sufficiently many steps. 

The central idea of the method of "exhaustion" can be illustrated by the proof of the following simple assertion which 

is the second theorem in Volume 12 of Euclid's Elements: The ratio of the areas of two circles is equal to the ratio 

of the squares of their radii. In other words, if a circle has radius d and area a, and a second circle has radius 0 

and area A, then 

(*) 

Effectively, this observation gives the formu la for the area of a circle. The proof given in Elements goes as follows: 

Suppose the equa lity (*) does not hold. Then either the left hand side (LHS) is larger than the right hand side (RHS) 

or vice versa. If the LHS is larger, that is, if a I A > d2 I Q2 , pick an a, < a such that a, I A = d 2 I 0 2
, and denote 

a- a, by e. Consider successive regular N-gons inscribed in the circles, with N doubling at each step; for example, 

start with N = 3, i.e., equilateral triangles, followed by regular hexagons (N = 6), etc. Denote by p(N) and P(N) the 

areas of these regular N-gons, inscribed in the circles of radii d and 0 respectively. Then it is easy to see that 

p(N) I P(N) = d 2 I 0 2
, and hence p(N) I P(N) = a, I A. Each time such an inscribed polygon doubles in the number 

of sides, the difference between its area and that of the circumscribing circle reduces by more than half (an exercise 

left to the readers). Therefore, by Eudoxos' Principle, after a certain number of steps, a va lue N is arrived at such 

that a - p(N) < e, that is, p(N) > a
1 

and hence P(N) > A. This statement that the inscribed polygon has a larger area 

than the circumscribing circle is of course absurd, showing that the original assumption that LHS is larger is flawed. 

Similarly we can rule out RHS being larger. 

In fact, the concepts of the infinitesimal and limit in calculus were already alluded to in Eudoxos' Principle, albeit 

disguised in a language involving finitely many steps, thus hiding the essentiality of the infinite. The fact that calculus 

was not born earlier was due in a large part to this attitude of ancient mathematicians that the infinite ought to be 

avoided. Nevertheless, the rigour demonstrated by mathematicians over 2000 years ago is wel l worth our respect. 

Using this technique, Archimedes estab lished many area and vo lume formulae. However, one mystery remained . 

One cou ld prove that a formu la was the right one by this method if the formula was indeed the right one, but how 

was one to come up with the right formula in the first place? Was Archimedes divinely inspired? This mystery was 

final ly unveiled in 1906 by Heiberg, a German scho lar who specia lized in ancient Greek mathematics. He found 

a parchment in a monastery in Constantinople with prayers from the 13th century. However underneath the prayers, 

some other writing cou ld barely be discerned. Through Heiberg's extreme care and persistance, it was finally revealed 

that it was a 1Oth century copy of a missing manuscript of Archimedes. It was a letter to the mathematician 

Eratosthenes explain ing how he discovered the area and volume formulae. This precious document is now known 

as "The Method". 
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Archimedes explained that he first put the geometric object on one side of a hypothetical balance. The geometric 

object was viewed as being made up of infinitesimal cross sections, which he would move, one by one, from one 

side of the balance to the other until the two sides balanced. The area or volume formulae were then calculated 

by the Principle of Moment of Force. 

To illustrate this, let us take a round ball of radius R, a circular cylinder of radius R and height 2R, and a circular 

cone of base radius 2R and height 2R, and put them on side A of a balance as shown in diagram 1 a. Measuring 

from the fulcrum 0 of the balance, remove a cross section of a very small thickness L at a distance x (see diagram 

1 a). Since L is very small, we may suppose that the volumes of the cross sections of the ball, cylinder and cone are 

respectively nx(2R- x)L, nih, and rc/L (why?). Take the cross sections from the ball and the cone and move them 

to side 8 of the balance, at a distance 2R from 0. From the theory of mechanics, we can calculate the torque from 

side 8 to be 2R[nx(2R- x)L + niL] = x(n(2R/L]. Thus, if we double the radius of the cylinder on side A, the two 

sides will balance. By moving the ball and the cone to the other side of the balance cross section by cross section, 

they will eventually balance the cylinder with the radius doubled on the other side (see diagram 1 b). 

Thus, denoting the volumes of the ball, the original cylinder, the enlarged (radius doubled) cylinder, and the cone by 

V8, Vc, V0 and VN respectively, we obtain the formula that 

R Side 8 Side A 

Since 
R 8 

0 
0 

it follows that N 

Diagram Ia 
Diagram lb 

Furthermore, as V
0 
= 4 Vc , we conclude that 

In addition, Archimedes determined that the surface area of the sphere is two-thirds that of the (original) cylinder. He 

was so proud of this formula that he decided that the geometric figure depicting the ball 8 contained in the cylinder C 

(see diagram 2) was to be his epitaph . 

Diagram 2 

Archimedes' death was a tragedy to the world. There was a legend that when the Roman 

general Marcellus took the city Syracuse in south Italy in which Archimedes lived, the 

soldiers found an old man in a room drawing pictures in sand. When the soldiers ruined 

the drawings, the old man lost his temper and was subsequently killed by the soldiers. 

The old man was Archimedes. Another legend had it that Marcellus was much impressed 

by Archimedes' genius and wanted to meet him. When the soldiers went to fetch 

Archimedes, he was completely absorbed in his problem-solving and refused to go, 

thereupon the soldiers lost their cool and had Archimedes killed. 

A/as, after two thousand years, Archimedes is still being remembered, but who still 

remembers Marcellus? To finish the legend, when he learned of Archimedes' death, 

Marcellus was so remorseful he erected a monument on which Archimedes' beloved 

geometric shapes were engraved. As time went by, people forgot about this, until it was rediscovered in 1965 when 

the site was acquired for hotel development. 

E"P:. M alhemalical 
..... EDLEY MRRCH 1996 

0 



Yang Ma 

Volume Calculations in Ancient China 

To continue with our story, but now moving to the Far East, the earliest complete and systematic mathematical treatise 

in China is }iu Zhang Suanshu (Nine Chapters on the Mathematical Art), which contained results in mathematics up 

to the Han dynasty (206 BC - AD 220), including, without proof, many area and volume formulae. 

During the time of the Three Kingdoms (AD 220 - 265), Liu Hui provided explanatory notes for }iu Zhang Suanshu. 
The fifth chapter, entitled "Shang Gong" (discussing work), dealt with engineering mathematics, but in fact contained 

mainly volume calculations. Among the problems discussed was one on the volume of a "yang ma", which was the 

building term at the time meaning the pyramid with rectangular base. Liu Hui wrote: "Bisecting a cube along the 

diagonal yie lds two 'qian du'. Each 'qian du' can further be divided along a diagonal into a 'yang ma' and a 'bie 

Qian Du 

Diagram 3 

Bie Nao 

nao', at the constant ratio of 2 : 1 in volume." "Qian du" 

is the term for the wall around a moat, here meaning a 

prism whose cross sections are right-angled triangles. "Bie 

nao" is the term for a particular tortoise bone, here meaning 

a pyramid with right-angled triangular base (see diagram 3). 

Thus, according to Liu Hui, the volume of a "yang ma" is 

twice that of a "bie nao", whereas two "yang ma" and two 

"bie nao" together make one cube. Hence, the volume of 

a "b ie nao" is one-sixth that of a cube, and the volume of 

a "yang ma" is one-third that of a cube, giving the formula 

that the volume of a "yang ma" is equal to one-third the 

product of the height and the base area. 

More than one thousand and six hundred years after Liu Hui, the German mathematician Hilbert raised the following 

famous problem: Is it possible to re-arrange a subdivision of a polyhedron to obtain another polyhedron of the same 

volume? The answer is that this is not always possible. The solution of this problem has a profound mathematical 

meaning, which, put simply, is that calculus is necessary for volume calculations. 

So was calculus used in Liu Hui's derivation? The answer was in fact yes, but probably Liu Hui himself was not aware 

of it, as it was quite beyond the level of mathematical sophistication of his time. As a matter of fact, after the passage 

quoted above, Liu Hui 's explanations continue, and they can be summarized as follows: Divide the "yang ma" into 

two smaller "yang ma" and four "qian du", and divide the "bie nao" into two smaller "b ie nao" and two "qian du". 

Put aside all the smaller "yang ma" and "bie nao", then the remaining parts of the original "yang ma" and "bie 

nao" are in the ratio of 2 : 1 in volume. Repeat this process to each of the smaller "yang ma" and "bie nao". Upon 

iteration of this process, the "yang ma" and "bie nao" will get smaller and smaller. As they become infinitesimal, 

they become "formless and thus negligible". This explains why the volumes of the original "yang ma" and "bie nao" 

are in 2 : 1 ratio. Of course, by today's standards of rigour, "becoming formless and thus negligible" is not quite 

acceptable, but there is no doubt that Liu Hui has captured the basic idea of the infinitesimal. 

In the last section, we saw how Archimedes treated geometric objects as being made up of infinitesimal cross sections. 

This point of view was also often employed by Liu Hui in the form of the following principle: If the cross sections 

at the same height of two objects have a constant ratio in area, then the volumes of these two objects are also in 

the same ratio. An interesting example occurred when he corrected a mistake in the original text in chapter four, 

entitled "Shao Guang" (short width). The original text stated that the ratio between the volumes of a round ball and 

its circumscribing cube was Jil : 42 (in the original text, 3 was used as an approximation to n ). It had been known 

that the ratio between the area of a circle and its circumscribing square was n : 4, and therefore the volumes of a 

circular cylinder and its circumscribing cube were in the same ratio. The above mistake stemmed from the misconception 

that the ratio between the volumes of a round ball and its circumscribing circular cylinder was also n : 4. 

This error was pointed out by Liu Hui. In fact, he stated that n: 4 was the ratio between the volumes of the round 

ball and the object which he called "mou he fang gai". Visualize the round ball as being made up of cross sections 

of circles, from a point at the north pole increasing in size to the equator and then decreasing back to a point at the 

south pole. Each circle has a circumscribing square. The object formed by these circumscribing squares is a "mou 
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he fang gai". It is also the intersection between two identical circular cylinders which are placed such that their axes 

intersect perpendicularly. Thus, if one knew the volume of the "mou he fang gai", the volume of the round ball could 

be inferred. However, Liu Hui failed in his attempt to evaluate the volume of the "mou he fang gai", and he wrote: 

"Due to the extremely intricate interaction between the circle and the square, I fail to obtain the answer. I leave this 

problem to a more able person. It is not right for me to make irresponsible comments." His frankness, humility and 

integrity are indeed remarkable. 

After about two hundred years, during the North-South Period (AD 420- 589), the father and son mathematician team 

Zu Chongzhi and Zu Geng solved this problem in the following ingenious way: Divide the "mou he fang gai" into 

eight equal parts and put one part in a cube with side R (where R is the radius of the round ball). Now the volume 

of the space between the cube and the 1/8 "mou he fang gai" inside can be computed. Note that if we take a cross 

section of this space at a distance h from the bottom of the cube, its area is given by the Pythagoras Theorem to be 

R2 
- x1 = h1 (see diagram 4). Now take an upside down pyramid of height R with a square base (now on top) with 

side R. Its cross section at a distance of h from the bottom (the tip of the pyramid) also has an area of h2
• Therefore, 

the space between the cube and 1/8 of the "mou he fang 

gai " has the same volume as the pyramid. Now the 

pyramid is 1/3 of a cube with side R, therefore, the volume 

of the pyramid is (1 /3)R3, from which we deduce that the 

area of the "mou he fang gai " is (2/3)[)3 where 0 is the R 

diameter of the round ball. Finally, we conclude that the 

volume of the round ball is 

n I 4 x 2/3fY = 1/6n01
. 

Diagram 4 

It is a pity that their book Zhui Shu has been lost since the North Song dynasty (AD 960 - 1126) and very little is 

known about it. Our account of the above calculation is based on explanatory notes on }iu Zhang Suanshu written 

by the Tang dynasty (AD 618 - 907) mathematician Li Chunfeng. 

DiagramS 

The arguments by the Zu 's were based on the following principle: Given two objects 

whose cross sections at the same height have the same area, then the two objects have 

the same volume. This is known in the West as Cavalieri 's Principle, after the Italian 

mathematician who published it in 1635 and used it to establish many volume formulae. 

In fact, even in the West, this principle had been commonly used before the time of 

Cavalieri. For example, in the early 17th century, the German astronomer Kepler used 

it to find the area of an ellipse. He first put an ellipse of semi-major axis a and semi­

minor axis b in a circle of radius a (see diagram 5). Then he observed that the ratio 

between the lengths of A'B' and AB is b: a. As AB formed the cross sections of the 

B circle, and A '8' formed the cross sections of the ellipse, he concluded that the area of 

the ellipse was nab, using the knowledge that the area of the circle was na2
. 

Editor's Note: This is a translation of an article (in Chinese) by Dr M K Siu, which forms Chapter 

2 of his book One, Two, Three and Beyond, published by Cuangdong jiaoyu Chubanshe, 7990. 

The Singapore Mathematical Society wishes to thank Dr Siu for allowing this translation to be 

published in the Mathematical Medley. Due to the length of the article, it will be published in 

two parts; the second part will appear in the next issue of the Medley. 

*Dr M K Siu is Reader of Mathematics at the University of Hong Kong and is the author of 

numerous popular mathematics books. 

••or P Y H Pang is Senior Lecturer in Mathematics at the National University of Singapore. 

The translator would like to express his thanks to Professor Lam Lay Yong for her helpful advice. 
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