## Probem 1

Let $a$ and $b$ be two non-zero integers such that $|a| \leq 400$ and $|b| \leq 399$. Prove that

$$
|a \sqrt{3}+b \sqrt{8}|>\frac{1}{1997}
$$

Prizes in the form of book vouchers will be awarded to the first received best solution submitted by secondary school or junior college students in Singapore for each of these problems.
To qualify, secondary school or junior college students must include their full name, home address, telephone number, the name of their school and the class they are in, together with their solutions. Solutions should be typed and sent to:
The Editor; Mathematical Medley clo Department of Mathematics

National University of Singapore
Kent Ridge
Singapore 119260
and should arrive before

## 30 June 1997.

The Editor's decision will be final and no correspondence will be entertained.

One $\$ 100$ book voucher $\qquad$
Prize

In the figure $A B C D$ is a square. Given that there is a point $P$ on the same plane such that $P A=3, P B=7$ and $P D=5$. Find the area of $A B C D$ when
(a) $P$ is inside $A B C D$;
(b) $P$ is outside $A B C D$.


Prize
One $\$ 100$ book voucher $:$ Problem 2

## Solutions

to the problems in Volume 23, No. 2 September 1996

## Problem 3

Let $P(x), Q(x), R(x)$, and $S(x)$ be four polynomials in $x$ which satisfy the identity
$P\left(x^{4}\right)+x Q\left(x^{4}\right)+x^{2} R\left(x^{4}\right) \equiv\left(x^{3}+x^{2}+x+1\right) S(x)$.
Prove that $(x-1)$ is a common factor of $P(x), Q(x), R(x)$, and $S(x)$.

## Solution to Problem 3

by Ng Beow Leng, Nanyang Girl's High School, Class 454.
By substituting $x=1,-1, i$, $-i$ separately into the given equation, we have

$$
\begin{align*}
& P(1)+Q(1)+R(1)=4 S(1)  \tag{1}\\
& P(1)-Q(1)+R(1)=0  \tag{2}\\
& P(1)+i Q(1)-R(1)=0  \tag{3}\\
& P(1)-i Q(1)-R(1)=0 \tag{4}
\end{align*}
$$

Solving simultaneously equations (1) - (4) gives $P(1)=Q(1)=R(1)=S(1)=0$. Thus $(x-1)$ is a common factor of $\mathrm{P}(x), Q(x), R(x)$ and $S(x)$.

Solved also by Chan Tian Heong, The Chinese High School, Class 4D; He Ruimin, Raffles Institution, Class 3J; G. Venkateswara Rao, Hwa Chong Junior College, Class 96S32; Soh Chong Kian, The Chinese High School, Class 3A; Tan Jit Hin, Raffles Junior College, Class 1S01A. Two incorrect solutions were received.

Editor's note: The $\$ 100$ prize was shared equally by Chan Tian Heong, He Ruimin, Ng Beow Leng, G. Venkateswara Rao and Tan Jit Hin.


## Problem 4

Prove that
$1+\frac{1}{1996}\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{1996}\right)>(1997)^{\frac{1}{1996}}$

## Solution to Problem 4

by Eric Fang Kin Meng, RJC, Class 1S01C
$1+(1 / 1996)(1+1 / 2+1 / 3+\ldots+1 / 1996)$
$=(1 / 1996)[(1+1)+(1+1 / 2)+\ldots+(1+1 / 1996)]$
$=(1 / 1996)(2+3 / 2+4 / 3+\ldots+1997 / 1996)>(2 \cdot 3 / 2 \cdot 4 / 3 \ldots 1997 / 1996)^{1 / 1996}$
$=(1997)^{1 / 1996}$
The above inequality was proven by direct application of the Arithmetic Mean-Geometric Mean inequality. Equality does not hold as the elements are non-equal.

- Solved also by Chan Tian Heong, The Chinese High School, Class 4D; Ng Beow Leng, Nanyang Girls' High School, Class 4S4; Soh Chong Kian, The Chinese High School, Class 3A.
- Editor's Note: The $\$ 100$ prize was shared equally by Chan Tian Heong, Eric Fang Kin Meng, Ng Beow Leng and Soh Chong Kian.

