


Introduction 

Because I've written several expository articles about Fermat's Last 
Theorem, I get lots of mail (and e-mail) from amateur mathematicians. 

Today I'll discuss some questions that have been posed to me since 
my name was first linked with Fermat's Last Theorem. 

Question 1 

Through reading and discussions with colleagues, I learned that the 
history of xn + yn = 2zn touches many of the same mathematicians 
who worked on Fermat's equation. We can paraphrase this equation as 
the statement that zn is the average of xn and yn, or equivalently that 
the three nth powers lie in an arithmetic progression. 

There are solutions with xyz = 0 and also those for which xn = 

yn = zn. Are there other solutions? 
For squares, it is easy to find non-trivial solutions. For example, 1, 

25 and 49 lie in an arithmetic progression. However, Fermat proved that 
four distinct perfect squares cannot lie in an arithmetic progression. He 
proved also that three distinct fourth powers cannot lie in an arithmetic 
progression. 

Cubes were treated by Legendre and Euler; nth powers with n ~ 31 
were treated by Denes in the 1950s. There are no non-trivial solutions 
when 3 ~ n ~ 31. 

In view of the results of Fermat and Legendre, to prove that there 
are no non-trivial solutions for n > 2, it's enough to study the case 
where n is prime. By adopting the ideas used to treat Fermat's equation 
and some techniques of Henri Darmon, I proved in 1994 that there 
are no non-trivial solutions when n is a prime that is congruent to 1 
modulo 4. 

In 1997, Darmon and Lo1c Merel treated the remaining case when 
n is a prime that is congruent to 3 mod 4. ("Winding quotients and 
some variants of Fermat's last theorem.") 



Question 2 

" If you expand out ( x + y )n, the coefficient of xiyn-i is the binomial 

coefficient (7)· For example, since (x + y)5 = x5 + 5x4 y + 10x3y2 + 
10x2y3 + 5xy4 + y5

' the binomial coefficients n) are 1, 5, 10, 10, 5, 1. 
I've been calculating these numbers on my laptop. 

" I take a prime p congruent to 1 mod 4 and compute bp := (b): 
4 

p 5 13 17 29 37 ... 
bp 2 20 70 3432 48620 ... 

These numbers are very big, so I reduce them modulo p. 
"Let Cp be the residue of bp mod p, represented as a negative num

ber, if necessary, so that it's even. It seems to me that Cp is-up to 
sign-twice the odd number x that you get when you write p = x2 + y2 

with x odd and y even: 

p 5 13 17 29 37 41 53 ... 
Cp 2 -6 2 10 2 10 -14 ... 
X 1 3 1 5 1 5 7 ... 

Why is this so? And what is the meaning of the minus signs? " 

The relation between Cp and x was known in the 19th century. Both 
Cauchy and Gauss had proofs of the identity that my correspondent 
had uncovered. More precisely, Gauss proved a formula that yields the 
identity after a little bit of calculation; Cauchy has the identity pretty 
much as I've presented it. 

Fermat proved that each p that is 1 mod 4 may be written in the 
form x2 + y2, but he gave no formula for x '(or y). Cauchy viewed his 
identity as a formula for x. 

To show you how subtle this business is, let me explain the recipe 
for the sign of Cp (the binomial coefficient that is reduced mod p and 
taken to be even). First, write p = x2 + y2 and think of x andy as 
determined only up to sign. Next, fix the sign of x temporarily so that 
x + y - 1 is divisible by 4. 

For example, if p = 53, x = ±7, y = ±2, so we take x = +7. If 
p = 41, x = ±5, y = ±4, and we again take the "+." If p = 37, x = ±1, 
y = ±6, SO we take X = -1 for the moment. 

Finally, we change the preliminary sign of x if p is 5 mod 8 (but 
leave it alone if p is 1 mod 8). We change it for p = 5, p = 13, p = 29, 
p = 37, ... and leave it alone for p = 17, p = 41, p = 73, .... 
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The result is that this "tweaked" value of x is one-half the Cp that 
we displayed before. Let's do an example: p = 13. Then x = ±3 and 
y = ±2 at the start, so we choose initially x = +3 to make x + y- 1 
be a multiple of 4. We change the sign, getting x = -3 because 13 is 5 
mod 8. Indeed, cp = -6. 

Question 3 

The next question that I'll discuss was posed by James Lawler, a 17-
year-old student at Yale University. Lawler has been studying numbers 
mod p, where pis a prime number. For his question, we'll take p > 3: 
p = 5, 7, 13, .... The numbers mod p can be added, subtracted and 
multiplied in the usual manner. You just toss away multiples of p, so 
that you end up with numbers between 0 and p- 1. 

Lawler calculated the squares mod p. For example, when p = 7, the 
squares are 0, 1, 2 and 4. 

The squares mod 11 are 0, 1, 3, 4, 5 and 9. Mod 13, the squares are 
0, 1, 3, 4, 9, 10 and 12. The squares are 0, 1, 2, 4, 8, 9, 13, 15 and 16 
modulo 17. 

Number theory texts prove: 

• Aside from 0, there are P;1 squares mod p; 

• -1 mod p is a square if and only if p is 1 mod 4. 

• The product of two squares mod pis again a square mod p. 

A famous problem of the past centuries was to characterize those p 
for which a given number is a square. For example, when is 2 a square 
mod p? When is 17 a square mod p? (And so on.) Gauss was the first 
mathematician to give a complete solution to the problem. 

Lawler has been adding up the squares mod p, tabulating the answer 
as an ordinary integer (not reducing mod p). For example, for p = 

11, he computes 0 + 1 + 3 + 4 + 5 + 9 = 22. For p = 17, he gets 
0 + 1 + 2 + 4 + 8 + 9 + 13 + 15 + 16 = 68. 

It's not terribly hard to see that Lawler's sum Lis always divisible 
by p. Lawler's question concerns the complementary factor: 



Lawler noticed, first of all, that L = p · P~ 1 when pis 1 mod 4. 
Why is this true? 
The point is that -1 is a square mod p in this case. Since products 

of squares are squares, the negatives of squares are squares as well. 
If x is a square between 1 and p- 1, its negative is p- x. We can 
divide up the (p - 1) 12 different non-zero squares into (p - 1) I 4 pairs, 
each pair summing to p. For example, with p = 17 we can re-write 
0+1+2+4+8+9+13+15+16 as (1+16)+(2+15)+(4+13)+(8+9) = 
4 ·17. 

The remaining case where p = 3 mod 4 is harder because there is 
no obvious symmetry to exploit: 

If 11:712 ~ill4 ~~91 ::: I 
Lawler initially thought that the complementary factor L was 

p-3 
-4-, 

as suggested by this table. I was skeptical, since I had never encountered 
this simple statement in a textbook. 

Let's continue the table, tabulating the complementary factor Lip: 

p 7 11 19 23 31 43 47 59 67 ... 
Lip 1 2 4 4 6 10 9 13 16 ... 
9 1 2 4 5 7 10 11 14 16 ... 

It appears that Lip is always less than or equal to (p- 3)14 and that 
the identity LIp = (p- 3) I 4 is true fairly often. However, it is not true 
always! 

In fact, it is known that Lip = p-
1
4
-

2
h, where h is an odd 

positive integer that depends on p. This h is a class number that 
measures the extent to which unique factorization fails for the numbers 
n + m -1+2A, where nand mare integers. We have h = 1 for the first 
few values of p; h = 3 for p = 23 and p = 31; h = 5 for p = 47, and 
so on. (For a proof of the correct formula, see, e.g., Hermann Weyl's 
book Algebraic theory of numbers.) · 

Gauss studied the class number h and decided that h --+ oo as 
p --+ oo. He suspected that h = 1 precisely for the following values 
of p: 3, 7, 11, 19, 43, 67, 163. When I was Lawler's age, it was known 
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only that there was at most one further value of p for which h = 1. 
However, when I was 18 or 19 years old, A. Baker and H. Stark proved 
independently that Gauss's list is in fact complete! 

One Last Question 

"I have a short proof of Fermat's Last Theorem. Would you like to see 
it? " 

Answer: A recent book by Paulo Ribenboim, Fermat's Last Theo
rem for Amateurs, catalogs elementary methods that have been used 
to study Fermat's Last Theorem. All these methods seem to have lim
itations. 

No one has found an elementary proof of FLT, and I would be 
extremely surprised to see one. 
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