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Introduction 
I visited Singapore in March, 2000 at the invitation of the International 
Conference on Fundamental Sciences. During that conference, I spoke to 
students who were assembled at Victoria Junior college. My theme was a set 
of questions that had been sent to me by students and amateur mathemati
cians. My article [22) was based on the transparencies that I showed during 
my talk. At the same conference, I gave a "Public Lecture" at the National 
University of Singapore on the connection between Fermat's Last Theorem, 
and the conjecture- now a theorem!- to the effect that elliptic curves are 
related to modular forms. This article is based on the second lecture. 

The intention of this article is to offer a glimpse of some of the mathemat
ics that is associated with Fermat's Last Theorem. It might plausibly be read 
in conjunction with other articles that I have written about Fermat's Last 
Theorem: My article [23) with Brian Hayes in American Scientist focuses on 
the connection between Fermat's equation and elliptic curves. It was written 
in 1994, when the proof that Andrew Wiles announced in 1993 was not yet 
complete. My exposition (21) is intended for professional mathematicians 
who are not necessarily specialists in number theory. The introduction [25) 
by Simon Singh and me will be useful to readers who seek a summary of 
Singh's book (24) and to the documentary on Fermat's Last Theorem that 
Singh directed for the BBC [15). 

I thank the National University of Singapore and the Isaac Newton In
stitute for Mathematical Sciences at Cambridge for organizing the ICFS and 
for their kind hospitality in Singapore. My research was partially supported 
by the US National Science Foundation during the preparation of this article. 

Background 
Arguably the single most famous statement in mathematics is the assertion 
that Fermat's equation 

has no solutions in positive integers a, b, and c when n is an integer greater 
than 2. According to his son Samuel, Pierre de Fermat wrote this assertion 
in the margin of his copy of Diophantus's Arithmetic, roughly in 1637. 

Although Fermat may have believed in the 1630's that he had a proof of 
what came to be known as "Fermat's Last Theorem," we can only speculate 
as to what Fermat had in mind. It is widely believed that the argument that 
Fermat had mapped out for himself ran into unexpected difficulties. Indeed, 
when he was a mature mathematician, Fermat detailed a proof that 

has no solution in positive integers, thus proving in particular that a perfect 
fourth power is not the sum of two others. Had Fermat been able to treat 
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an + bn = en for all n, he probably would not have been interested in the 
special case n = 4. 

It is worth pointing out that Fermat made at least one other mathematical 
assertion that proved to be incorrect: Fermat believed that the "Fermat 
numbers" Fn := 22

n + 1 are all prime. The first few of them-3, 5, 17, 
257 and 65537-are indeed prime numbers. The next number in the series, 
Fs = 232 + 1 = 4294967297, is not a prime: it's the product of 641 and 
6700417. Incidentally, there is no known n bigger than 4 for which Fn is 
prime. On the other hand, the numbers F6 , ... , F32 are known currently to 
be composite (i.e., non-prime); see http: I /www. prothsearch. net/fermat 
for information of this type, including a list of known factors of specific 
numbers Fn· 

Early History 

Fermat's Last Theorem has a long history, beginning with Fermat's work on 
the case n = 4 and Euler's 18th century study of a3 + b3 = c3 . 

The techniques used in the 17th and 18th centuries are now included in 
the curriculum of undergraduate courses in number theory. For example, the 
work of Fermat and of Euler is discussed in the first two chapters of [9] and at 
various junctures in [12]. (The latter book is one of my favorite introductions 
to number theory. I recommend it enthusiastically to Berkeley students who 
seek an introduction to modern methods in number theory.) 

After thinking about the first cases n = 3 and n = 4 of Fermat's equation, 
one turns naturally to exponents larger than 4. In fact, a simple remark shows 
that one need treat only the case where n is a prime number bigger than 2 . 
Indeed, it is clear that Fermat's assertion, when true for a given exponent n, 
is true for all exponents that are multiples of n. For example, knowing the 
assertion for n = 3 allows us to conclude that there are no counterexamples 
to Fermat's assertion when n is 6, 9, 12, and so on. This remark follows from 
the simple observation that any perfect sixth power is in particular a perfect 
cube, and so forth. 

Now any integer n bigger than 2 is either a power of 2 (2t with t 2: 2) 
or else is a multiple of some prime number p > 2. Since integers of the 
first kind are divisible by 4- an exponent for which Fermat himself proved 
Fermat's Last Theorem- it suffices to consider exponents that are odd prime 
numbers when one seeks to prove Fermat's Last Theorem. In other words, 
after verifying Fermat's assertion for n = 4 and n = 3, mathematicians were 
left with the problem of proving the assertion for the exponents 5, 7, 11, 13, 
17, and so on. 

Progress was slow at first. The case n = 5 was settled by Dirichlet and 
Legendre around 1825, while the case n = 7 was treated by Lame in 1832. 

In the middle of the nineteenth century, E. Kummer made a tremendous 
advance by proving Fermat's Last Theorem for an apparently large class of 
prime numbers, the regular primes. The definition of this class may be given 



quickly, thanks to a numerical criterion that was established by Kummer. 
Namely, one considers the expression 

x x x2 x4 x6 x8 x10 691 x12 

ex- 1 = 
1-2+ 12-720 + 30240-1209600 + 47900160-1307674368000 + ... 

xi 
and defines the ith Bernoulli number Bi to be the coefficient of 1 in this 

't. 

expansion. Thus B 12 , for example is -
2
6
;
3
1
0

; the denominator is 2 · 3 · 5 · 7 ·13, 

the product of those primes p for which p- 1 divides 12. A prime number 
p 2:: 7 is regular if p divides the numerator of none of the even-indexed 
Bernoulli numbers B2 , B4 , ... , Bp_3 . The primes p < 37 turn out to be 
regular. On the other hand, 37 is irregular (i.e., not regular) because it divides 
the numerator of B32 : the numerator is 7709321041217 = 37 · 683 · 305065927. 
(We may conclude that 683 and 305065927 are irregular as well.) 

A proof of Fermat's Last Theorem for regular primes, along the lines 
given by Kummer, may be found in [9, Ch. 5). See also [17) and [2) for 
alternative discussions. In these books, the reader will find a proof that there 
are infinitely many irregular prime numbers; see, for example, [17, Ch. VI, 
§4) or [2, Ch. 5, §7.2). Although heuristic probabilistic arguments suggest 
strongly that regular primes should predominate, the set of regular primes is 
currently not known to be infinite. 

Over the years, Kummer's work was refined repeatedly. Aided by machine 
calculation, mathematicians employed criteria such as those presented in [17) 
to verify Fermat's Last Theorem for all prime exponents that did not exceed 
ever increasing bounds. Most notably, four mathematicians proved Fermat's 
Last Theorem for all prime exponents below four million in an article that 
was published in 1993 [4). It is striking that the calculations in that article 
were motivated by questions involving Bernoulli numbers and the arithmetic 
of cyclotomic fields; the proof of Fermat's Last Theorem for a large set of 
prime numbers came almost as an afterthought. 

Readers used to dealing with experimental sciences might well now ask 
why a mathematician would insist on a rigorous proof of a statement, de
pending on a parameter n, that can be verified by calculation for all n ~ 
4, 000,000. A statement that is true in this range seems very likely to be 
true for all n. To answer this question, it suffices to point out the logical 
possibility that an assertion that is true experimentally may have one or 
more counterexamples that happen to be very large. 

In fact, assertions that realize this possibility are not hard to find in 
number theory. As Fermat himself knew, the first solution to x2 -109y2 = 1 
in positive integers x and y is given by: 

X= 158070671986249, y= 15140424455100. 

(See [27, Ch. II, §XIII) for an illuminating discussion of Fermat's study of 
x2 - Ny2 = ±1.) If we set out to examine x2 -109y2 = 1 with a computer, we 
might look for solutions with x and y non-zero, find no such solutions, and 
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conclude incorrectly that this equation has only the trivial solutions ( -1, 0) 
and (1, 0). 

Here's another example: Euler conjectured in the eighteenth century that 
a perfect fourth power cannot be the sum of three perfect fourth powers. 
Noam Elkies [10] found the first counterexample to Euler's conjecture in 1988: 

26824404 + 153656394 + 187967604 = 206156734
. 

These examples illustrate the fact that numerical evidence in number theory 
can be misleading. 

Modern History 
The proof of Fermat's Last Theorem at the end of the last century hinges 
on a connection between putative solutions of Fermat's equation and cubic 
equations with integer coefficients (elliptic curves). To have a solution to 
Fermat's equation is to have positive integers a and b for which an + bn is a 
perfect nth power. (We shall suppose that n is at least 5 and that n is a prime 
number. The results of Fermat and Euler imply that these assumptions are 
harmless.) Given a and b, we consider the equation 

in which x and y are new variables. This equation defines an elliptic curve. 
The connection between Fermat and elliptic curves was noticed by several 

mathematicians, including Yves Hellegouarch and Gerhard Frey. In a recent 
book [11], Hellegouarch recounts the history of this connection. It was Frey 
who had the decisive idea that E could not possibly satisfy the Shimura
Taniyama conjecture, which states that elliptic curves are modular. (We 
shall discuss this crucial property below.) 

Frey's suggestion became known to the mathematical community in the 
mid 1980s. In 1986, I proved that elliptic curves associated to solutions 
of Fermat's equation are non-modular, thereby showing that Fermat's Last 
Theorem is a consequence of the Shimura-Taniyama conjecture [19], [20]. 
Said differently: each solution to Fermat's Last Theorem gives a counterex
ample to the Shimura-Taniyama conjecture. Thus if that conjecture is true, 
so is Fermat's Last Theorem. 

As the reader is no doubt aware, Andrew Wiles worked in his Princeton 
attic from 1986 to 1993 with the goal of establishing the Shimura-Taniyama 
conjecture. Although the conjecture per se was a central problem of number 
theory, Wiles has stated that he was drawn to this problem because of the 
link with Fermat's Last Theorem. In June, 1993, Wiles announced that he 
could prove the Shimura-Taniyama conjecture for a wide class of elliptic 
curves, including those coming from Fermat solutions. This announcement 
implied that the proof of Fermat's Last Theorem was complete. 

After a short period of celebration among mathematicians, Wiles's col
league Nicholas Katz at Princeton found a "gap" in Wiles's proof. Because 



the gap's severity was not appreciated at first, it was months before the ex
istence of the gap was known widely in the mathematical community. By 
the end of 1993, however, the fact that Wiles's proof was incomplete was 
reported in the popular press. 

The proof announced by Wiles remained in doubt until October, 1994, 
when Richard Taylor and Andrew Wiles released a modified version of the 
proof that circumvented the gap. The new proof was divided into two articles, 
one by Wiles alone and one a collaboration by Taylor and Wiles [28], [26]. 
The two articles were published together in 1995. The proof presented in 
those articles was accepted quickly by the mathematical community. 

As a result of his work, Wiles has been honored repeatedly. For ex
ample, in December, 1999, he was knighted by the Queen: he received the 
"KBE/DBE" along with Julie Andrews, Elizabeth Taylor and Duncan Robin 
Carmichael Christopher, Her Majesty's ambassador to Jakarta1. 

After the manuscripts by Wiles and Taylor-Wiles were written in 1994, 
the technology for establishing modularity became increasingly more sophis
ticated and more general. The class of curves to which the technology can be 
applied was enlarged in three stages [8], [5], [3]. In the last stage, four math
ematicians- Christophe Breuil, Brian Conrad, Fred Diamond and Richard 
Taylor- announced in June, 1999 that they had proved the full Shimura
Taniyama conjecture, i.e., the modularity of all elliptic curves (that are de
fined by equations with integer coefficients). Although their proof is not yet 
published, it is available from http: I lwww. math. harvard. edu;-rtaylor I, 
Richard Taylor's Web site at Harvard. In addition, the proof has been the 
subject of a substantial number of oral presentations. In particular, the proof 
was explained by the four authors in a series of lectures at a conference held 
at the Mathematical Sciences Research Institute in Berkeley, California in 
December, 1999. 

The Shimura-Taniyama Conjecture 
The conjecture hinges on the notion of "arithmetic mod p," p being a prime 
number. When working mod p, we ignore all integers that are multiples of p. 
In other words, when we interact with an integer m, we care only about the 
remainder when m is divided by p. This remainder is one of the numbers 0, 
1, 2, ... , p- 1. For example, the integers mod 5 are 0, 1, 2, 3 and 4. 

Suppose that we are given an equation with integer coefficients. Then for 
each prime number p, we can use the equation to define a relation mod p. 
As an illustration, the simple equation x2 + y2 = 1 gives rise to a relation 
mod 2, mod 3, mod 5, and so on. 

This type of relation is best illustrated by a concrete example. Suppose 
that we take p = 5, so that the numbers mod 5 are the five numbers that we 
listed above. There are thus 25 pairs of numbers (x, y) mod 5. For each pair 
(x, y), we can ask whether x2 + y2 is the same as 1 mod 5. For (0, 4), the 

1http://files.fco.gov.uk/hons/honsdec99.shtml 
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answer is "yes" because 16 and 1 are the same mod 5. For (2, 2), the answer 
is "no" because 8 and 1 are not the same mod 5. After some calculation, one 
finds that there are four pairs of numbers mod 5 for which the answer is in the 
affirmative. These pairs are (0, 1), (0, 4), (1, 0) and (4, 0). After we recognize 
that 4 is that same as -1 mod 5, we might notice that the four solutions 
that we have listed have analogues for every prime number p > 2. There 
are always the four systematic solutions (0, 1), (0, -1), (1, 0) and ( -1, 0) for 
each such prime. 

We can make a similar calculation mod 7. It is fruitful to begin by listing 
the squares of the seven numbers mod 7: 

a 0123456 
a'2 0 1 4 2 2 4 1. 

In which ways can we write 1 as the sum of two numbers in the bottom row 
(possibly the sum of a number and itself)? We can write 1 as 0 + 1 = 1 + 0, 
and we can also write 1 as 4 + 4 (since 8 is the same as 1 mod 7). We end 
up with the four "new" solutions (±2, ±2) in addition to the four systematic 
solutions that we listed in connection with the case p = 5. As a consequence, 
there are eight solutions to x2 + y2 = 1 mod 7. 

After experimenting with other primes (p = 11, p = 13, etc.), you will 
have little trouble guessing the general formula for the number of solutions to 
x2 +y2 = 1 mod p. When p = 2, there are the two solutions (0, 1) and (1, 0). 
When pis bigger than 2, there are either p+ 1 or p-1 solutions to x2 +y2 = 1 
mod p, depending on whether p is 1 less than or 1 more than a multiple of 4. 
This simple recipe was known centuries ago. It can be established in various 
ways; perhaps I should leave its proof as an exercise for the interested reader. 

The equation x2 + y2 = 1 was intended as a warm-up; we shall now 
consider the superficially analogous equation x3 + y3 = 1. Here again we 
study the number of solutions to x 3 + y3 = 1 mod p and seek to understand 
how this number varies with p. It turns out that the quantity p mod 3 plays 
an important role here-just as the behavior of p mod 4 was significant for 
x2 +y2 = 1. When p = 3, the quantity x3 mod p coincides with x mod 3; this 
is a special case of what is called "Fermat's Little Theorem" in textbooks. 
Hence the solutions to x3 + y3 = 1 mod 3 are the same as the solutions to 
x + y = 1; there are three solutions, because x can be taken arbitrarily, and 
then y is 1- x mod 3. If pis 2 mod 3, i.e., if pis 1less than a multiple of 3, 
one shows by an elementary argument that there are again p solutions. (If p 
is 2 mod 3, then every number mod p has a unique cube root.) 

The interesting case for this equation is the remaining case where p is 1 
more than a multiple of 3. This case was resolved by Gauss in the nineteenth 
century. To see what is going on, we should look at a few examples: 

First of all, let us take p = 7. The cubes mod 7 are 0, 1 and 6 = -1. If 
two cubes sum to 0, one is 1 and the other is 0. Also, 1 has three cube roots: 
1, 2 and 4. Thus there are six solutions to x3 + y3 = 1 mod 7, namely (0, 1), 
(0, 2), (0, 4) and the analogous pairs with x andy reversed. 

When p = 13, the cubes are 0, 1, -1, 5 and 8. There are again only six 



solutions because the only way to write 1 as a sum of two cubes is to take 
0 + 1 as before. 

Now try p = 19. It turns out that there are 24 solutions here--the six 
that we knew about already, together with 18 unexpected ones arising from 
the equation 1 = 8 + ( -7) and the fact that 8 and -7 are both cubes mod 19. 
(Since 43 = 64 = 7 mod 19, -7 is the cube of -4.) We get 18 solutions by 
taking x to be one of the 3 cube roots of 8 and y to be one of the 3 cube 
roots of -7, or vice versa. 

When p = 31, there are 33 solutions. (Note that 33 = 6 + 18 + 9.) There 
are 6 solutions coming from 0 + 1 = 1, 18 coming from 2 + ( -1) = 1 and 9 
from 16 + 16 = 1. Summary: 

p 7 13 19 31 ... 
# solns. 6 6 24 33 · · · . 

How does this table continue? What is the number of solutions that we get 
when pis, say, 103? It is hard to imagine the rule that expresses the number 
of solutions in terms of p. 

Gauss found an expression for the number of solutions that we can view 
as a "generalized formula" [12, p. 97]. Namely, when p = 1 mod 3, Gauss 
showed that one has 

4p = A2 + 27B2 

for some integers A and B. These integers are uniquely determined except 
for their signs. We can and do choose A so that A = 1 mod 3. Then Gauss's 
formula states: 

# solns. = p - 2 + A. 

For example, if p = 13, then 4p = 52 = 52 + 27 · 12 . Thus A = -5. We 
have p - 2 + A = 6. 

When p = 31, 4p = 124 = 42 + 27 · 22 . Thus A = 4 and p - 2 +A = 33. 
When p = 103, 4p = 132 + 27 · 32

, so A= 13 and the number of solutions 
is 114. 

The equation x3 + y3 = 1 defines one of the simplest possible elliptic 
curves. Gauss's explicit recipe shows in particular that x3 + y3 = 1 defines a 
modular elliptic curve. 

The Shimura-Taniyama conjecture states that there's an analogous "for
mula" for every elliptic curve. Because this formula involves modular forms, 
the Shimura-Taniyama conjecture is usually paraphrased as the statement 
that elliptic curves are modular. 

For a random elliptic curve, the formula provided by the associated mod
ular form is not as explicit as Gauss's formula for x3 + y3 = 1. Here is a 
famous example that begins to give the flavor of the general case: We con
sider first the formal power series with integral coefficients I: anxn that is 
obtained by expanding out the product 

00 

X II (1- xm)2(1- xnm)2. 
m=l 
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For all n 2: 1, an is an integer. In fact, the numbers an are the coefficients of 
the Fourier expansion of a well known modular form. 

At the same time, we consider the elliptic curve defined by the equation 
y2 + y = x3 

- x 2 . Then a theorem of M. Eichler and G. Shimura states that, 
for each prime p (different from 11), the number of solutions to this equation 
mod pis p-aP. The connection between the number of solutions and the 
pth coefficient of a modular form shows that the elliptic curve defined by 
y2 + y = x3

- x 2 is a modular elliptic curve. (A coffee mug that celebrates 
this relation is currently available from the Mathematical Sciences Research 
Institute. Go to http: I /www. msri. org/ search. html and search for "coffee 
cup.") 

Another Formula of Gauss 
For a third example, we look at the elliptic curve defined by the equation 
y2 = x3 

- x. Although its equation recalls the equation y2 + y = x3 - x2 

of the second example, this third example is much more analogous to the 
first example. To explain the analogy, it is important to recall a theorem of 
Fermat about sums of squares. Namely, suppose that pis a prime number 
and that we seek to write p is the form r2 + 8 2 , where r and 8 are integers . 
If p is 2, we can write p = 12 + 12. If p is congruent to 3 mod 4, then it is 
impossible to write p as r 2 + 8 2 . Indeed, squares are congruent to either 0 
or 1 mod 4; it is therefore impossible that a sum of two squares be congruent 
to 3 mod 4. 

The interesting case is that where pis congruent to 1 mod 4, i.e., where 
p is 1 plus a multiple of 4. Fermat proved in that case that p may be written 
as a sum of two squares: we have p = r 2 + 8 2 with r and 8 whole numbers. 
The pair (r, 8) is clearly not unique because we can exchanger and 8 and we 
can change the signs of either or both of these integers. However, there is no 
more ambiguity than that: the integers r and 8 become unique up to sign 
after we require that r be odd and that 8 be even. Accordingly, r and 8 are 
determined completely if we require that r be odd, that 8 be even and that 
both integers be positive. 

This theorem of Fermat is proved in most elementary number theory 
books; see, e.g., [12, Ch. 8) for one proof. (The uniqueness is left as an 
exercise at the end of the chapter.) A beautiful proof of the existence of r 
and 8, due to D. Zagier, is presented in "Proofs from the Book" [1), a volume 
celebrating Paul Erdos's idea that there is frequently an optimally beautiful 
proof of a given proposition in mathematics. 

Following Gauss, we will now adjust the sign of r (if necessary) to ensure 
that the sum r + 8 is congruent to 1 mod 4. For example, suppose that p = 5, 
so that (r, 8) = (1, 2) under the initial choice that has both rand 8 positive. 
With this choice, r + 8 = 3 is not 1 mod 4. Accordingly, we change the sign 
of r and put r = -1. The sum r + 8 is then 1, which of course is 1 mod 4. 
For another example, we take p = 13, so that (r, 8) = (3, 2) with the initial 
choice. Here r + 8 = 3 + 2 = 5, which is already 1 mod 4. We therefore leave 



r positive in this case. It is perhaps enlightening to tabulate the values of r 
and 8 for the first ten primes that are 1 mod 4. In doing so, we write "r p" 
instead of "r" and "8p" instead of "8" to stress that r and 8 depend on p: 

p 5 13 17 29 37 41 53 61 73 89 ... 
rp -1 3 1 -5 -1 5 7-5 -3 5 ... 

8p 2 2 4 2 6 4 2 6 8 8 .... 

We return now to y2 = x3 - x with the idea of calculating the number of 
solutions to the mod p congruence defined by this equation. If p = 2, there 
are two solutions: (0, 0) and (1, 0). If p is congruent to 3 mod 4, it turns 
out that there are exactly p solutions. More precisely, if x is 0, 1 or -1 (i.e., 
p- 1) mod p, then y = 0 is the one value of y for which (x, y) is a solution. 
For each value of x different from 0 and ±1, there are either two values of y 
or no values of y for which (x, y) is a solution mod p. (If a non-zero number 
mod p has a square root, it has exactly two square roots, which are negatives 
of each other.) An elementary argument shows that if there are two y for a 
given x, then there are no y for -x, and vice versa. The point here is that a 
non-zero number mod p has a square root mod p if and only if its negative 
does not; this observation is valid when p is 3 mod 4 but fails to be true 
when p is 1 mod 4. The end result is that, on average, there is one value of y 
that works for each x. Thus the number of solutions is p, as was stated. 

The interesting case for y2 = x 3 - x is that where p is congruent to 1 
mod 4. We assume now that this is the case. To get a feel for the situation, 
we can calculate the number of solutions mod 5 and mod 13; these are the 
first two primes that are 1 mod 4. 

Suppose that p = 5. The values x = 0, x = 1 and x = 4 make x3 
- x 

congruent to 0, so that they give rise to exactly one solution each; y must 
be 0. If x = 2, then x3 - xis congruent to 1, a number that has two square 
roots mod 5, namely ±1. Thus x = 2 gives rise to two solutions. Similarly, if 
x = 3, then x3 - x is congruent to 4 mod 5, and 4 has two square roots. Thus 
x = 2 also gives rise to two solutions. As a result, there are seven solutions 
to y 2 = x3

- x mod 5. 
Suppose now that p = 13. The three values x = 0, 1,-1 give rise to a 

single solution each, as before; in each case, y is again 0. The ten remaining 
values of x (namely, x = 2, 3, ... , 11) each give rise either to two or to no 
solutions: the quantity x3 

- x is non-zero mod p and we have to decide in 
each case whether or not it is a square (i.e., a number with square roots 
mod p). The quantities are respectively 6, 11, 8, 3, 2, 11, 10, 5, 2 and 7 
mod 13. On the other hand, the non-zero squares mod 13 are 1, 3, 4, 9, 10 
and 12. It happens, then, that only two of the numbers x between 2 and 11 
are such that x3 

- x is a square. Thus we find- one again- that there are 
seven solutions to y 2 = x3 

- x mod p. 
One could easily guess from these two examples that there are always 

seven solutions to y2 = x3 
- x mod p when p is 1 mod 4, but these two 

examples are misleading. 
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Theorem 1 (Gauss) Suppose that p is a prime that is 1 mod 4. Then the 
number of solutions to y2 = x 3 - x mod p is p- 2rp, where rp is chosen as 
above. 

The theorem is compatible with the two examples that we presented. When 
p = 5, we have rp = -1, so that p- 2rp = 7. When p = 13, rp is 3, and 
13- 2 · 3 = 7. Since r73 = -3, the number of solutions to y2 - x3 - x 
mod 73 is 73 + 6 = 79. Here is an example with a p that is considerably 
larger than the primes that have appeared thus far: Suppose that p is the 
prime number 144169. We can write p as the sum 3152 + 2122 . It follows 
that rp = ±315. Since 315 + 212 = 527 is 3 mod 4, we must take rp = -315. 
Gauss's formula then asserts that the number of solutions to y2 = x3 

- x 
mod pis 144169 + 2 · 315 = 144799. 

A variant of Gauss's formula is proved in [12, Ch. 11, §8]. The connection 
between the variant given there and the formula of Theorem 1 is made in 
Exercise 13 at the end of [12, Ch. 11]. 

Further Reading 
During the course of this article, I have mentioned some of my favorite articles 
and books about number theory, especially those that touch on Fermat's 
Last Theorem. Here are a few more references that I have not yet had 
occasion to cite. First, a summary of "elementary" approaches to Fermat's 
Last Theorem is provided by P. Ribenboim in his book [18]. Secondly, an 
interesting discussion of elliptic curves and modular forms is contained in 
A. van der Poorten's book [14]. Next, the recent "diary" by C. J. Mozzochi 
[13] contains photos of the mathematicians who participated in the proof of 
Fermat's Last Theorem, along with detailed descriptions of lectures and other 
events that are associated strongly with the proof. Finally, several accounts 
of the details of the proof of Fermat's Last Theorem have been written for 
professional mathematicians [7], [16], [6]. What is missing from the literature, 
at least so far, is an extended account of the proof that is accessible to a 
scientifically literate lay reader and does justice to the mathematics behind 
the proof. 
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