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Graphs and 
Their Applications (2) 

5. Connectedness 

The mathematical structure: graphs and, more generally, multigraphs, which 
was introduced in [3], can be used conveniently to model many real situations. For 
instance, Figure 5.1 (a) shows a section of the street system of a town, and it can be 
modeled as a graph as shown in Figure 5.1 (b), where vertices representing junctions 
of streets and two vertices are joined by an edge if and only if the corresponding 
junctions are linked by a street. For certain purposes, we may have to traverse the 
street system by passing through some junctions and streets. In order to show more 
precisely and succinctly the way we traverse, in this section, we shall introduce some 
basic terms in multigraph which serve the purpose. 
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(a) 
Figure 5.1 (b) 

Consider the multigraph G of Figure 5.2 (that is, Figure 2.4 in [3]). If we start 

G: 

Figure 5.2 

at vertex 'a', then we can reach vertex 'k' via the edge e1, and from 'k' to 'h' via 
e7. We can further proceed to reach 'g' via e12· This process can be conveniently 
expressed by the following sequence of vertices and edges: 

(1) 

Such a sequence is called a walk or, more precisely, an a- g walk as 'a' and 'g' are 
respectively the initial and terminal vertices of the walk. Note that the sequence 



'a e1 k es h' is not a walk as the edge es does not join the vertices 'k' and ' h'. Some 
more walks in G are given below: 

be3ke4Jeske4Jewg, (2) 

be3ke4Jeske7h, (3) 

be3ke4j en hegc, (4) 

be2ceske4Jeske3b, (5) 

be2ceghe129e5ke3b. (6) 

While the definition of a 'walk' is quite general, in certain situations, we do need 
certain types of walks. A walk is called a trail if no edge in the walk is traversed 
more than once. A walk is called a path if no vertex in the walk is visited more than 
once. Thus, the b- g walk (2) is not a trail; the b- h walk (3) and b- b walk (5) 
are trails but not paths; the a- h walk (1) and b- c walk (4) are paths. A walk 
is closed if its initial and terminal vertices are the same; and open otherwise. Thus, 
the walks (5) and (6) are closed while (1)- (4) are open. A closed walk is called a 
cycle if, besides the initial and terminal vertices (which are the same in this case), 
the rest are all distinct. Thus, the closed walk (6) is a cycle while the closed walk 
(5) is not. Note that the closed walk je4kesf is regarded as a cycle. 

Any of the above notions of 'walks' enables us to introduce a very important 
class of multigraphs, called connected multigraphs. A multigraph G is said to be 
connected if every pair of vertices in G are joined by a path. For instance, in Figure 
5.3, the graph (a) is connected while (b) is not so (observe that the vertices 'r' and 
'u' are not joined by a path). 

p 
r 

u 

(a) (b) 
q 

Figure 5.3 

A multigraph is disconnected if it is not connected. Observe that the disconnected 
graph (b) in Figure 5.3 is made up of three pieces that are themselves connected: 

r 

L. ~ I 
s t X y q 

Figure 5.4 
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Each of these pieces is called a component of the graph (b). 

Exercise 5.1. Consider the following graph 

v X 

H: u eg 

w y 

Figure 5.5 

(a) Which of the following sequences represents a u - z walk in H? 
(i) ue2wesxe7z 
(ii) ue1 vesyesz 
(iii) ue1 ve3we3ve4xe7 z 

(b) Find a u - z trail in H that is not a path. 
(c) Find all u- z paths in H which pass through eg. 

Exercise 5.2. Consider the following graph with 12 vertices and 9 edges. Is the 
graph connected? If not, how many components does it have? 

Figure 5.6 

6. The Unicursal Property and Eulerian Multigraphs 

Consider the multigraph G of Figure 6.1 (a) and the following walkinG as shown 
in Figure 6.1 (b): 



X X 

G: 

y y 

(a) (b) 

Figure 6.1 

Observe that W is a closed trail (no edge is repeated) which traverses every edge 
of G. This reminds us the Konigsberg Bridge Problem introduced in Section 1 [3] 
which asks essentially whether the multigraph of Figure 6.2 possesses a closed trail 
which passes through each of its edges. 

Figure 6.2 

Instead of merely considering the Konigsberg Bridge Problem, Euler [1] asked the 
following general question: what can be said about a multigraph if 
( *) it possesses a closed trail which passes through each of its edges? 

In literature, the property ( *) is often referred to as the closed unicursal property. 
In memory of Euler, such a closed trail is named a closed Euler trail and any multi­
graph which possesses a closed Euler trail is named an eulerian multigraph. Thus, 
the multigraph of Figure 6.1 (a) is an eulerian multigraph. 

Exercise 6.1. Show that each of the following multigraphs is eulerian by exhibiting 
a closed Euler trail. 

Figure 6.3 

Is there any odd vertex (i.e., a vertex of odd degree) in each multigraph? 
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Exercise 6.2. Are the following multigraphs eulerian? Are there any odd vertices 
in each multigraph? 

0>0 
Figure 6.4 

Suppose that G is a multigraph having the closed unicursal property. Then, 
by definition, G possesses a closed walk W : v1e1 v2e2 ... VmemVm+b which passes 
through each edge of G once and exactly once. Thus e1, e2, ... , em are the dis­
tinct edges in G, and each edge in G is one of the ei's. Note that the vertices 
v1, v2, ... , Vm+l need not be distinct (indeed, v1 = Vm+l)· 

Euler now asserted that each vertex in G must be even. To see this, let v be an 
arbitrary vertex in G. Assume first that vis not the initial vertex in the closed walk 
W (hence v is also not the terminal vertex in W). Then each time we traverse W 
to visit v, there must be two edges in the walk W, say ei and ei+l, such that the 
former one is for us to reach v and the latter one for us to leave v. Since all the edges 
incident with v are contained in the walk W, the number of edges incident with vis 
thus even, which means that v is an even vertex. Assume now that v is the initial 
vertex (and so the terminal vertex also) in the walk W. That is, v = v1 = Vm+l· 
For the first move, there is an edge (i.e. e1) for us to leave v; for the last move, 
there is an edge (i.e., em) for us to return to v; and besides these, each time we visit 
v (if any) there must be two edges in the walk W, one for entering v and one for 
leaving v. Thus, again, the number of edges incident with v is even; that is, v is an 
even vertex. 

Euler's assertion is now re-stated as follows: 

Theroem 6.1. If G is an eulerian multigraph, then each vertex in G is even. 

The negative answer to the Konigsberg Bridge Problem now follows readily from 
Theorem 6.1. Consider the multigraph G of Figure 6.2. Since not every vertex in G 
is even (indeed, every vertex in G is odd), by Theorem 6.1, G is not eulerian. 

By Theorem 6.1, it is now easy to see that all the multigraphs shown in Exercise 
6.2 are not eulerian. 

Note that if a multigraph has the unicursal property, then it must be connected. 
Thus, as far as the unicursal property is concerned, we confine ourselves to connected 
multigraphs. 

Theorem 6.1 says that if a multigraph G has the closed unicursal property, then 
very vertex of G must be even. Is the converse true? That is, if G is a connected 



multigraph in which every vertex is even, does G have the closed unicursal property? 
Euler thought that the answer is 'yes', but he didn't provide its proof. 

Unaware of Euler's work [1], Carl Hierholzer, a young German mathematician, 
published his work [2] in 1873 which contains not only a proof of Theorem 6.1, but 
also its converse. Thus, we have: 

Theorem 6.2. Let G be a connected multigraph. If every vertex of G is even, 
then G is eulerian. 0 

Exercise 6.3. Prove Theorem 6.2. 

Consider the multigraph G of Figure 6.5 (a) with two specified vertices u and v. 
Figure 6.5 (b) shows au- v trail T which passes through each edge in G, butT is 
not closed ( u -1- v). In this situation, we say that G has the open unicursal property, 
T is an open Euler trail and G is a semi-eulerian multigraph. Note that u and v 
are the only two odd vertices in G. In general, a multigraph is said to have an open 
unicursal property or said to be semi-eulerian if it possesses an open Euler trail, i.e., 
an open walk which passes through each of its edges once and exactly once. 

Figure 6.5 

Exercise 6.4. Determine whether the following multigraphs are semi-eulerian. 
How many odd vertices are there in each of them? 

Figure 6.6 

Exercise 6.5. Applying Theorems 6.1 and 6.2, or otherwise, show that a connected 
multigraph is semi-eulerian if and only if it contains exactly two odd vertices. 
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Exercise 6.6. Two halls are partitioned into small rooms for an exhibition event 
in two different ways as shown in (a) and (b) below, where A is the entrance and B 
is the exit. 

(i) Is it possible for a visitor to have a route which enters at A, passes through 
each door once and exactly once and exits at B in partition (a)? 

(ii) Explain why such a route is not available in partition (b). Which door should 
be closed to ensure the existence of such a route? 

(a) (b) 
Figure 6.7 

Exercise 6. 7. We have shown that the multigraph G of Figure 6.1 (a) is eulerian. 
Look at its edge set E( G) and observe that the edges in G can be partitioned into 
three edge-disjoint cycles as shown below: 

/IX 
u. w v.

x 

w z 

8 

y 

Figure 6.8 

Show that, in general, a connected multigraph is eulerian if and only if all its 
edges can be partitioned into some edge-disjoint cycles. 

Exercise 6.8. Which of the complete graphs Kn (see [3] for definition) are 
eulerian? Which of the complete bipartite graphs K(p, q) are eulerian (resp., semi­
eulerian)? 

Exercise 6.9. Let G1 and G2 be two connected semi-eulerian multigraphs. 

(i) Is it possible to form a semi-eulerian multigraph by adding a new edge joining 
a vertex u in G1 and a vertex v in G2 as shown below? If the answer is 'yes', 
how can this be done? 



G1 Gz 

Figure 6.9 

(ii) Is it possible to form an eulerian multigraph by adding two new edges, each of 
which joining a vertex in G1 and a vertex in G2? If the answer is 'yes' , how 
can this be done? 

Exercise 6.10. Let G1 and G2 be two connected multigraphs having 2p and 2q 
odd vertices respectively, where 1 ::; p::; q. We wish to form an eulerian multigraph 
from G1 and G2 by adding new edges, each of which joining a vertex in G1 aml a 
vertex in G2. What is the least number of edges that should be added? 

Exercise 6.11. The following graph H is not eulerian. What is the least number 
of new edges that should be added to H so that the resulting multigraph becomes 
eulerian? In how many ways can this be done? 

H: 

Figure 6.10 

7. Fleury's Algorithm 

Throughout this section, let G be a connected multigraph. Theorems 6.1 and 6.2 
tell us that 

G is eulerian if and only if every vertex in G is even. (7.1) 

Determine whether G is eulerian by trying our luck on searching for a closed Euler 
trail in G is by no means simple especially when G contains a large amount of edges. 
On the other hand, checking whether a vertex is even is really a small matter. Thus, 
the result in (7.1) enables us in reducing the amount of work to determine if G is 
eulerian. 

Suppose we know that G is eulerian by (7.1). The next natural question is : how 
are we going to find a closed Euler trail in G? Unfortunately, no answer is given 
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in (7.1). In this section, we shall present a well-known procedure, due to Fleury 
(before 1921), which enables us to construct a closed Euler trail in a connected 
eulerian multigraph efficiently. 

A special type of edges and some notation will be introduced in advance. Given 
an edge e in G, we denote by G- e the multigraph obtained by deleting e from G. 

More generally, if F is a set of edges in G, we denote by G - F the multigraph 
obtained by deleting successively the edges in F from G (see Figure 7.1). 

~~ I .I\ 
Figure 7.1 

An edge e in G is called a bridge if G - e is disconnected. Thus, as shown in 
Figure 7.1 , the edge e2 is a bridge (and the only bridge) in G. 

Before presenting Fleury's method formally, let us mention briefly its 'idea'. We 
may choose any vertex, say vo, to start off. Then select an edge JI, say h = vov1, 
incident with it , and traverse from vo via h to reach VI. Delete h from G to get 
G- JI. Now, from VI, select an edge h in G- JI, say h = v1v2, incident with VI 
such that h is not a bridge in G - h, unless there is no other alternative. Traverse 
from v1 via h to reach v2. Delete h from G- h and repeat the procedure until 
a closed Euler trail is found. It is noted that, in the above procedure, selecting fi 
from G- {fi, ... , fi-I} such that fi is not a bridge in G- {fi, ... , fi - d, if it is 
available, is to ensure that no edge in G is missed from the trail formed. 

We are now in a position to state the following: 

Fleury's Algorithm 

Given: a connected eulerian multigraph G. 
Objective: to construct a closed Euler trail in G. 

1° (Initial step) Choose an arbitrary vertex, say vo, and set To = vo (an initial 
trail). 



2° (Inductive step) Assume that a trail Tk = vo!Ivd2v2 · · ·Vk-dkvk (vi's are 
vertices and fi(= Vi-lvi)'s are edges) has been constructed. Form a longer 
trail Tk+l by extending Tk with the addition of a new edge fk+l such that 
fk+l = VkVk+l and, unless there is no other alternative, fk+l is not a bridge in 
the multigraph G - {!I, ... , fk}. 

3° (Ending step) Stop when step 2° cannot be implemented any further. 

We illustrate the algorithm by the following example. 

u w 

G is a given connected eulerian multi-
G: y graph. We start at v and traverse from 

v via the edge h = vx to reach x. 

v 

u w 

G - fl: h y From x, choose h to reach w. 

v X 

u There are 3 edges incident with w. As 
wu is a bridge in the current multi-

G - {/1 , /2}: y graph, it cannot be selected. Instead, 
we may choose wx or wy, say h = wy, 

v X 
to reach y. 

u !6 w 

y From y, as there is no other choice, 
G - h we follow successively j4, fs , ! 6, hand 
{!I,hh}: return to v. 

v X 

Conclusion. The walk: vfixhwfsyf4xfswf6uhv is a desired closed Euler trail in 
G. 

V fl X 

Figure 7.1 
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It is noted that in the third diagram shown above, should we choose wu (which is 
a bridge in the current graph) instead of !3, we would return to v without passing 
through the three remaining edges. 

We have shown how Fleury's algorithm works in constructing a closed Euler 
trail in a connected eulerian multigraph. Incidentally, Fleury's algorithm could 
be modified slightly to construct an open Euler trail in a connected semi-eulerian 
multigraph. In this situation, all we need to do is to choose one of the two odd 
vertices as the starting vertex. The algorithm itself would automatically take case 
of the rest and lead us to a terminal vertex which is the other odd vertex. 

Exercise 7.1. Apply Fleury's algorithm to construct a closed Euler trail in the 
following eulerian graph. 

Figure 7.2 

Exercise 7.2. Construct an open Euler trail in the following semi-eulerian multi­
graph. 

Figure 7.3 
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