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5. Connectedness

The mathematical structure: graphs and, more generally, multigraphs, which
was introduced in [3], can be used conveniently to model many real situations. For
instance, Figure 5.1 (a) shows a section of the street system of a town, and it can be
modeled as a graph as shown in Figure 5.1 (b), where vertices representing junctions
of streets and two vertices are joined by an edge if and only if the corresponding
junctions are linked by a street. For certain purposes, we may have to traverse the
street system by passing through some junctions and streets. In order to show more
precisely and succinctly the way we traverse, in this section, we shall introduce some
basic terms in multigraph which serve the purpose.

(2) Figure 5.1 (b)

Consider the multigraph G of Figure 5.2 (that is, Figure 2.4 in [3]). If we start

Figure 5.2

at vertex ‘a’, then we can reach vertex ‘K’ via the edge e;, and from ‘k’ to ‘A’ via
e7. We can further proceed to reach ‘g’ via ejs. This process can be conveniently
expressed by the following sequence of vertices and edges:

ae; k €7 h €12 9. (1)

Such a sequence is called a walk or, more precisely, an a — g walk as ‘a’ and ‘g’ are
respectively the initial and terminal vertices of the walk. Note that the sequence



‘a e k eg b’ is not a walk as the edge eg does not join the vertices ‘k’ and ‘h’. Some
more walks in G are given below:

beskes feskes ferog, (2)
beskeys feskerh, (3)
~ beskesferiheoc, (4)
begcegkey feskesb, (5)
begcegherageskesd. (6)

While the definition of a Walk is quite general, in certain situations, we do need
certain types of walks. A walk is called a trail if no edge in the walk is traversed
more than once. A walk is called a path if no vertex in the walk is visited more than
once. Thus, the b — g walk (2) is not a trail; the b— h walk (3) and b — b walk (5)

—

are trails but not paths; the a — h walk (1) and b — c walk (4) are paths. A walk

is closed if its initial a; mmmal vertices are the same; and open otherwise. Thus,
the walks (5) and ( ed while (1) - (4) are open. A closed walk is called a
cycle if, besides the initial and terminal vertices (which are the same in this case),
the rest are all distinct. Thus, the closed walk (6) is a cycle while the closed walk
(5) is not. Note that the closed walk feskesf is regarded as a cycle.

Any of the above notions of ‘walks’ enables us to introduce a very important
class of multigraphs, called connected multigraphs. A multigraph G is said to be
connected if every pair of vertices in G are joined by a path. For instance, in Flgure
5.3, the graph (a) is connected while (b) is not so (observe that the vertices ‘v’ and
“w’ are not joined by a,path)
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Figure 5.3

A multigraph is disconnected if it is not connected. Observe that the disconnected
graph (b) in Figure 5.3 is made up of three pieces that are themselves connected:

T p
T , Z
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Figure 5.4
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Each of these pieces is called a component of the graph (b). # ’ :

R S

Exercise 5.1. Consider the following graph

- Figure 5.5

(a) Which of the following sequences represents a u z walk in H?
(i) ueqweszerz
(i) uejvesyesz
(il) uejveswesvesrerz

(b) Find a u — z trail in H that is not a pa.th

(c) Find all u — z paths in H which pass through eg.

Exercise 5.2. Consider the following graph with 12 vertices and 9 edges. Is the
graph connected? If not, how many components does it have?

NG

*

Figure 5.6

6. The Unicursal Property and Eulerian Multigraphs

Consider the multigraph G of Figure 6.1 (a) and the following walk in G as shown
in Figure 6.1 (b):

W : zejweqyesweszerzegyegzegwes
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Figure 6.1

Observe that W is aemci trail (no edge is repeated) which traverses every edge
of G. This reminds us the Konigsberg Bridge Problem introduced in Section 1 [3]
which asks essentially w - the multigraph of Figure 6.2 possesses a closed trail

e

Figure 6.2

Instead of merely considering the Konigsberg Bridge Problem, Euler [1] asked the
following general question: what can be said about a multigraph if
() it possesses a closed trail which passes through each of its edges?

In literature, the property (x) is often referred to as the closed unicursal property.
In memory of Euler, such a closed trail is named a closed Euler trail and any multi-
graph which possesses a closed Euler trail is named an eulerian multigraph. Thus,
the multigraph of Figure 6.1 (a) is an eulerian multigraph.

Exercise 6.1. Show that each of the following multigraphs is eulerian by exhibiting
a closed Euler trail.

S®S

Figure 6.3

Is there any odd vertex (i.e., a vertex of odd degree) in each multigraph?
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Exercise 6.2. Are the following multigraphs eulerian? Are there any odd vertices
in each multigraph?

Figure 6.4

Suppose that G is a multigraph having the closed unicursal property. Then,
by definition, G possesses a closed walk W : viejvzes. .. Um€mUm+1, which passes

through each edge of G once and exactly once. Thus ej,es,..., e, are the dis-
tinct edges in G, and each edge in G is one of the e;’s. Note that the vertices
V1,09, ..., Vm+1 Deed not be distinct (indeed, v; = vpm41).

Euler now asserted that each vertex in G must be even. To see this, let v be an
arbitrary vertex in G. Assume first that v is not the initial vertex in the closed walk
W (hence v is also not the terminal vertex in W). Then each time we traverse W
to visit v, there must be two edges in the walk W, say e; and e;;1, such that the
former one is for us to reach v and the latter one for us to leave v. Since all the edges
incident with v are contained in the walk W, the number of edges incident with v is
thus even, which means that v is an even vertex. Assume now that v is the initial
vertex (and so the terminal vertex also) in the walk W. That is, v = v] = vy41.
For the first move, there is an edge (i.e. e;) for us to leave v; for the last move,
there is an edge (i.e., €,,) for us to return to v; and besides these, each time we visit
v (if any) there must be two edges in the walk W, one for entering v and one for
leaving v. Thus, again, the number of edges incident with v is even; that is, v is an
even vertex.

Euler’s assertion is now re-stated as follows:
Theroem 6.1. If G is an eulerian multigraph, then each vertex in G is even.

The negative answer to the Konigsberg Bridge Problem now follows readily from
Theorem 6.1. Consider the multigraph G of Figure 6.2. Since not every vertex in G
is even (indeed, every vertex in G is odd), by Theorem 6.1, G is not eulerian.

By Theorem 6.1, it is now easy to see that all the multigraphs shown in Exercise
6.2 are not eulerian.

Note that if a multigraph has the unicursal property, then it must be connected.
Thus, as far as the unicursal property is concerned, we confine ourselves to connected
multigraphs.

Theorem 6.1 says that if a multigraph G has the closed unicursal property, then
very vertex of G must be even. Is the converse true? That is, if G is a connected
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multigraph in W ich every vertex is even, does G have the closed unicursal property?
Euler thought tha the~answer is ‘yes’, but he didn’t provide its proof.

Unaware of Euler work [1], Carl Hierholzer, a young German mathematician,
published his work [2] in 73 which contains not only a proof of Theorem 6.1, but
also its converse. Th v

Theorem 6.2. Let a connected multigraph. If every vertex of G is even,

then G is eulerian,

Exercise 6.3. Prove heorem 6.2.

Consider the multxgmph G of Figure 6.5 (a) with two specified vertices u and v.
Figure 6.5 (b) shows a u — v trail 7" which passes through each edge in G, but T is
not closed (u # v). In t uation, we say that G has the open unicursal property,
T is an open Euler trail and G is a semi-eulerian multigraph. Note that « and v
are the only two odd vertices in G. In general, a multigraph is said to have an open
unicursal property or said to be semi-eulerian if it possesses an open Euler trail, i.e.,
an open walk which passes thmugh each of its edges once and exactly once.

Figure 6.5

Exercise 6.4. Determine whether the following multigraphs are semi-eulerian.
How many odd vertices are there in each of them?

Figure 6.6

Exercise 6.5. Applyiﬁg Theorems 6.1 and 6.2, or otherwise, show that a connected
multigraph is semi-eulerian if and only if it contains exactly two odd vertices.

i
i
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Exercise 6.6. Two halls are partitioned into small rooms for an édlibition event
in two different ways as shown in (a) and (b) below, where A is the entrance and B
is the exit. “

(i) Is it possible for a visitor to have a route which en, s at A passes through -
each door once and exactly once and exits at B in partition (a)?

(i) Explain why such a route is not available in partltmn (b) Which door should
be closed to ensure the existence of such a route? :

A B 3
| - B
Ll L4~
Lr T T o
] | = nﬁ |
(a) ' 'fﬁ)

Figure 6.7 :
Exercise 6.7. We have shown that the multigraph G of’fFigme 6.1 (a) is eulerian.

Look at its edge set E(G) and observe that the edges in G can be partitioned into
three edge-disjoint cycles as shown below:

T
€1 es er e z
w 2 ! -
C4
() €5 €8 <
Yy Y

Figure 6.8

Show that, in general, a connected multigraph is eulerian if and only if all its _j
edges can be partitioned into some edge-disjoint cycles.

Exercise 6.8.  Which of the complete graphs K, (see [3] for definition) are
eulerian? Which of the complete bipartite graphs K(p, ¢) are eulerian (resp., semi
eulerian)?

Exercise 6.9. Let G; and G2 be two connected semi-eulerian multigraphs.
(i) Is it possible to form a semi-eulerian multigraph by adding a new edge joining

a vertex u in G; and a vertex v in G2 as shown below? If the answer is ‘yes’,
how can this be done?




Gy G2

. : Figure 6.9
(ii) Is it possible to form an eulerian multigraph by adding two new edges, each of
which joining a v&rtex in G1 and a vertex in G27 If the answer is ‘yes’, how

Exercise 6.10. Let G; and G be two connected multigraphs having 2p and 2q
odd vertices respectively, where 1 < p < g. We wish to form an eulerian multigraph
from G and G by adding new edges, each of which joining a vertex in Gy and a
vertex in G2. What is the least number of edges that should be added?

Exercise 6.11. Ths ,oﬂomng graph H is not eulerian. What is the least number
of new edges that should be added to H so that the resulting multigraph becomes
eulerian? In how many ways can this be done?

e

Figure 6.10

7. Fleury's Algorithm

Throughout this section, let G be a connected multigraph. Theorems 6.1 and 6.2
tell us that

G is eulerian if and only if every vertex in G is even. (7.1)

Determine whether G is eulerian by trying our luck on searching for a closed Euler
trail in G is by no means simple especially when G contains a large amount of edges.
On the other hand, checking whether a vertex is even is really a small matter. Thus,
the result in (7.1) enables us in reducing the amount of work to determine if G is
eulerian.

Suppose we know that G is eulerian by (7.1). The next natural question is : how
are we going to find a closed Euler trail in G? Unfortunately, no answer is given

YOLUM«< 30 NO., juné 2002
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in (7.1). In this section, we shall present a well-known procedure, due to Fleury |
(before 1921), which enables us to construct a closed Euler trail in a connected
eulerian multigraph efficiently.

A special type of edges and some notation will be mi‘.rodﬁeed in advance. Given
an edge e in G, we denote by G — e the multxgraph obtame(L by deleting e from G.

More generally, if F is a set of edges in G, we denote by G F the multigraph
obtained by deleting successively the edges in F' from G (see Figure 7.1).

€2
€1 es
€4
G G — €1
— €2 G'— {elv €3, 34}
Figure 7.1

An edge e in G is called a bridge if G — e is disconnected. Thus, as shown in
Figure 7.1, the edge e is a bridge (and the only bridge) in G.

Before presenting Fleury’s method formally, let us mention briefly its ‘idea’. We
may choose any vertex, say v, to start off. Then select an edge fi, say f1 = vouy,
incident with it, and traverse from vy via f; to reach v;. Delete f; from G to get
G — f1. Now, from vy, select an edge f2 in G — fi, say fo = vjvg, incident with v;
such that fs is not a bridge in G — fi, unless there is no other alternative. Traverse
from vy via fa to reach vo. Delete fo from G — f; and repeat the procedure until
a closed Euler trail is found. It is noted that, in the above procedure, selecting f;
from G — {fi,..., fi—1} such that f; is not a bridge in G — {f;,..., fi—1}, if it is
available, is to ensure that no edge in G is missed from the trail formed.

We are now in a position to state the following:
Fleury’s Algorithm

Given: a connected eulerian multigraph G.
Objective: to construct a closed Euler trail in G.

1°  (Initial step) Choose an arbitrary vertex, say vo, and set To = vp (an initial
trail). ‘




2 (Indﬁctive aj;ep) Assume that a trail Ty = vo fivifovs - - - vk—1 fkve (vi's are
fi(= vi—1v;)’s are edges) has been constructed. Form a longer

trail Tk+1 by extending T} with the addition of a new edge fi4+1 such that
frar = 'ukvm_l and, unless there is no other alternative, fi1; is not a bridge in

o nliigeaph skl o fu):
3° (Ending step)

when step 2° cannot be implemented any further.
We dlustrame the ,,;1 rorithm b‘y the following example.

G is a given connected eulerian multi-

G: graph. We start at v and traverse from
v via the edge fi = vz to reach z.
G- From z, choose fa to reach w.
 There are 3 edges incident with w. As
B G ~ wu is a bridge in the current multi-
G- {h. fa}: e - graph, it cannot be selected. Instead,

 we may choose wz or wy, say f3 = wy,
to reach y.

From y, as there is no other choice,
we follow successively fi, fs, f¢, f7 and

G S
{f1, fa, f3}: return to v.

G.
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It is noted that in the third diagram shown above, should we choose wu (which is
a bridge in the current graph) instead of f3, we would return to v mthout passing
through the three remaining edges. Bt

We have shown how Fleury’s algorithm works in constructing a closed Euler
trail in a connected eulerian multigraph. Incidentally, Fleury’s algorithm could
be modified slightly to construct an open Euler trail in a connected semi-eulerian
multigraph. In this situation, all we need to do is to ch@ose one of the two odd
vertices as the starting vertex. The algorithm itself would automatically take case
of the rest and lead us to a terminal vertex which is the

Exercise 7.1. Apply Fleury’s algorithm to constmct a {‘;losed Euler trail in the
following eulerian graph.

;}‘;

Figure 7.2

Exercise 7.2. Construct an open Euler trail in the follomng semi-eulerian multi-
graph.
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