Primitive Sixth Root of Unity and Problem 6 of the 42nd International Mathematical Olympiad

Chan Heng Huat

Department of Mathematics National University of Singapore Singapore 117543

Primitive Sixth Root of Unity and Problem 6 of the 42nd International Mathematical Olympiad

We begin our story with the last problem of the 42^{nd} International Mathematical Olympiad:

Proposition 1 (Problem 6). Let a, b, c, d be integers with a > b > c > d > 0. Suppose that

(1) ac + bd = (b + d + a - c)(b + d - a + c).

Then ab + cd is not prime.

An elegant solution of the above problem can be found in [3, p. 55-56].

Since the expressions ab + cd and ac + bd are similar, it is natural to ask for a factorization of ab + cd similar to (1). My attempt to find such a factorization leads me to the following table:

a	b	с	d	ab + cd	$(ab+cd, b^2-c^2)$
8	7	3	0	56	8
8	7	5	0	56	8
11	9	5	1	104	15
11	9	6	1	105	21

As usual, (m, n) denote the greatest common divisor of m and n. Note that the table shows that $1 < (ab + cd, b^2 - c^2) < ab + cd$ and this motivates us to formulate the following modification of Proposition 1:

Proposition 2 (Problem 6 (modified)).

Let a, b, c, d be integers with $a \ge b > c > d \ge 0$ and (a, c) = 1. Suppose that ac + bd = (b + d + a - c)(b + d - a + c). Then

$1 < (ab + cd, b^2 - c^2) < ab + cd.$

It is easy to see that Proposition 2 implies Proposition 1. It suffices only to show that (a, c) = 1. Suppose (a, c) = r > 1. Then a = ur, c = vr and ab + cd = r(ub + vd). If ab + cd is prime then r must be prime and ub + vd = 1. Since u, v, b, d > 0, this is impossible. Now that (a, c) = 1, we conclude from our result that ab + cd is not a prime since we have found a non-trivial divisor of ab + cd, namely, $(ab + cd, b^2 - c^2)$.

Before we prove Proposition 2, we need a few Lemmas.

Lemma 3. [4, p. 12]

If n, n_1 , and n_2 are natural numbers, $n|n_1n_2$ and $n \not |n_1, n \not |n_2$ then

$$=\frac{n_1}{\left(n_1,\frac{n_1n_2}{n}\right)}$$

divides n and $1 < \delta < n$.

Proof. Now

Therefore,

Hence,

$$n_1 = \frac{n_1}{\delta}k, \frac{n_1n_2}{n} = \frac{n_1}{\delta}l,$$

 $\frac{n_1}{\delta} = \left(n_1, \frac{n_1 n_2}{n}\right).$

 $\frac{n_1}{\delta} \in \mathbf{N}.$

with (k, l) = 1. Hence, $k = \delta$, (i.e. $(\delta, l) = 1$) and $n_2\delta = nl$. Since $(\delta, l) = 1$, $\delta | n$. Therefore δ is a divisor of n. If $\delta = 1$ then $n_2 = nl$ and therefore, $n | n_2$, a contradiction. If $\delta = n$ then $n | n_1$, again a contradiction. Hence $1 < \delta < n$.

Lemma 4. If k, l are integers such that $k^2 + kl + l^2 = 1$, then (k, l) = (1, -1), (-1, 1), (1, 0), (0, 1), (-1, 0), (0, -1).

Proof. From the hypothesis, we conclude that

 $4k^2 + 4kl + 4l^2 = 4.$

This implies that

$$2k+l)^2 + 3l^2 = 4.$$

The solutions to this final equation are the six given solutions.

Remarks. The six solutions correspond to the six units in the ring of integers $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$. For more details, see [2, p.8, Ex. 12].

Proof of Proposition 2.

To prove the claim, we first observe that the condition (1) is equivalent to

(2)
$$a^2 - ac + c^2 = b^2 + bd + d^2 =: n.$$

We may deduce from (2) that

(3)
$$n^2 = (ab + cd)^2 + (ad - bc - cd)^2 + (ab + cd)(ad - bc - cd)$$

(4)
$$= (ad + bc)^{2} + (ab - cd - bc)^{2} + (ab - cd - bc)(ad + bc),$$

and

(5)
$$(ab+cd)(ab-cd-bc) = (b^2-c^2)(b^2+bd+d^2).$$

We claim that if n|(ab + cd) then n|(ad - bc - cd).

From (3), we find that

$$4n^{2} = (2(ad - bc - cd) + ab + cd)^{2} + 3(ab + cd)^{2}$$

Since n|(ab + cd), we find that

$$n^{2}|(2(ad - bc - cd) + ab + cd)^{2}.$$

Using the fact that $a^2|b^2$ implies that a|b (see [1, p. 22, Ex. 12]), we conclude that

$$n|(2(ad - bc - cd) + ab + cd).$$

This implies that

$$n|2(ad - bc - cd)$$

since n|(ab + cd). Since gcd(a, c) = 1, $n = a^2 - ac + c^2$ must be odd (by looking at the parity of a and c). This shows that n|(ad - bc - cd).

Now let ab + cd = kn and ad - bc - cd = ln. Then we obtain

$$n^2 = k^2 n^2 + l^2 n^2 + lkn^2.$$

or

(6)
$$1 = k^2 + kl + l^2$$

By Lemma 4, the integral solutions to (6) are

$$(k, l) = (1, -1), (-1, 1), (1, 0), (0, 1), (-1, 0), (0, -1).$$

Now, ab + cd > 0 implies that second, fourth, fifth and sixth solutions are inadmissible. If ad - bc - cd = 0, then ad = c(b + d). Since (a, c) = 1, we deduce that c|d. This is impossible since c > d. Hence the third solution is also inadmissible. We therefore conclude that

(7)
$$ab + cd = n$$
 and $ad - bc - cd = -n$.

Adding up these two equations, we conclude that

$$a(b+d) = bc,$$

which is again impossible since ab > bc. Hence $n \not| (ab + cd)$.

International Mathematical Olym D and

If n|(ab-cd-bc) then from (4) and similar argument as above, we conclude that n|(ad+bc) and that

$$d + bc = n$$
 and $ab - cd - bc = -n$.

This gives

$$ab + ad = cd,$$

and that a|d, a contradiction. Hence $n \not| (ab - cd - bc)$.

a

By (5) and Lemma 3, with $n_1 = ab + cd$, $n_2 = ab - cd - bc$ and $n = b^2 + bd + d^2$, we conclude that

$$< \frac{ab+cd}{(ab+cd, b^2-c^2)} < b^2 + bd + d^2.$$

Hence,

$$(ab+cd, b^2-c^2) < ab+cd.$$

It remains to show that $(ab + cd, b^2 - c^2) > 1$. If $(ab + cd, b^2 - c^2) = 1$ then the number

$$\delta = \frac{ab + cd}{(ab + cd, b^2 - c^2)} = ab + cd$$

is a divisor of $b^2 + bd + d^2$. But $b^2 + bd + d^2 < ab + ab + cd = 2(ab) + cd < 2(ab + cd)$, implies that $n = b^2 + bd + d^2 = ab + cd$. However, we have seen previously (see (7)) that ab + cd = n leads to a contradiction. Hence, $(ab + cd, b^2 - c^2) > 1$ and our proof is complete.

Concluding Remarks.

- 1. Expression (3) follows from the fact that $x^2 + xy + y^2$ is the norm of the element $x + y\omega \in \mathbf{Q}(\sqrt{-3})$, where $\omega = \frac{1 + \sqrt{-3}}{2}$. Since the norm of $a c\omega$ and $b + d\omega$ is n, the norm of $(a c\omega)(b + d\omega)$ must be n^2 . Calculating the norm explicitly, we find that the first identity holds.
- 2. Proposition 2 and its proof are inspired by the proof given in [3, p. 55-56] and [4, p. 225]. It is by coincidence that I turn to page 225 of W. Sierpiński's book and realize that the problem there is related to the IMO's problem.

REFERENCES

- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1986.
- [2] D. A. Marcus, Number Fields, Springer-Verlag, New York, 1977.
- [3] Mathematical Medley, vol. 29, no. 1, June 2002.
- [4] W. Sierpiński, *Elementary Theory of Numbers*, North-Holland, Poland, 1988 (Revised and enlarged by A. Schinzel).