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We begin our story with the last problem of the 42"¢ International Math-

ematical Olympiad:

Proposition 1 (Problem 6). Let a, b, c,d be integers witha > b > ¢ > d > 0.

Suppose that

(1) ac+bd=(b+d+a—-c)(b+d—a+c).

Then ab + cd is not prime.

An elegant solution of the above problem can be found in [3, p. 55-56].
Since the expressions ab + cd and ac + bd are similar, it is natural to ask
for a factorization of ab + c¢d similar to (1). My attempt to find such a

factorization leads me to the following table:

a | b | c|d|ab+cd|(ab+cdb?—c?)
7130 56 gk

B | T:{ Bel_@uk 56 8

N T AT R e 15

1196 ]1]| 105 21

As usual, (m,n) denote the greatest common divisor of m and n. Note
that the table shows that 1 < (ab+ cd, b% — c?) < ab+ cd and this motivates

us to formulate the following modification of Proposition 1:

Proposition 2 (Problem 6 (modified)).

Let a,b,c,d be integers witha > b > c>d >0 and (a,c) = 1. Suppose that

ac+bd=(b+d+a—-c)(b+d—a+c).




Then
1< (ab+ cd,b® — c?) < ab + cd.

It is easy to see that Proposition 2 implies Proposition 1. It suffices only
to show that (a,c) = 1. Suppose (a,c) = r > 1. Then a = ur,c = vr
and ab + cd = r(ub+ vd). If ab+ cd is prime then r must be prime and
ub+ vd = 1. Since u,v,b,d > 0, this is impossible. Now that (a,c) =1, we
conclude from our result that ab + cd is not a prime since we have found a
non-trivial divisor of ab + cd, namely, (ab + cd, b> — c?).

Before we prove Proposition 2, we need a few Lemmas.

Lemma 3. [4, p. 12]
If n,n1, and ny are natural numbers, n|ning and n fni, n fno then
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with (k,l) = 1. Hence, k = 4, (i.e. (6,1) = 1) and nad = nl. Since (4,1) =1,
d|n. Therefore § is a divisor of n. If § = 1 then ng = nl and therefore, n|ng,
a contradiction. If § = n then n|n;, again a contradiction. Hence 1 < § < n.

Lemma 4. If k,1 are integers such that k* + kl 4+ 12 = 1, then
(ka l) = (1’ _1)’ (_1’71), (1)0), (07 1); (‘_1; 0)7 (05 _1)-

Proof. From the hypothesis, we conclude that
4K? + 4kl + 417 = 4.

This implies that
. (2k +1)* + 31> = 4.
The solutions to this final equation are the six given solutions.

Remarks. The six solutions correspond to the six units in the ring of
integers Z [li}E] For more details, see [2, p.8, Ex. 12].

Proof of Broposz‘tion 2.




To prove the claim, we first observe that the condition (1) is equivalent
to

(2) a®—ac+ =02 +bd+d>=:n.
We may deduce from (2) that
(3)  n?=(ab+ cd)®+ (ad — be — cd)? + (ab + cd)(ad — be — cd)

(4) = (ad + bc)? + (ab — cd — be)? + (ab — cd — be)(ad + be),
and
(5) (ab + cd)(ab — cd — be) = (b? — ) (b? + bd + d?).

We claim that if n|(ab+ cd) then n|(ad — bc — cd).
From (3), we find that

4n? = (2(ad — be — cd) + ab + cd)? + 3(ab + cd)®.
Since n|(ab + cd), we find that
n?|(2(ad — bc — cd) + ab + cd)*.

Using the fact that a2|b? implies that a|b (see [1, p. 22, Ex. 12]), we conclude
that
n|(2(ad — bc — ed) + ab + cd).
This implies that
n|2(ad — be — cd)
since n|(ab + cd). Since ged(a,c) = 1, n = a® — ac + ¢ must be odd (by
looking at the parity of a and c). This shows that n|(ad — bc — cd).
Now let ab+ cd = kn and ad — bc — c¢d = In. Then we obtain

= n? = k*n? 4 12n? + lkn?,
or
(6) 1=K +kl+1%

By Lemma 4, the integral solutions to (6) are

(k1) = (17 =1, (_1, 1), (1,0), (0, 1)a (=1,0),(05=1).
Now, ab + cd > 0 implies that second, fourth, fifth and sixth solutions are
inadmissible. If ad — bc — cd = 0, then ad = c(b+ d). Since (a,c) = 1, we
deduce that c|d. This is impossible since ¢ > d. Hence the third solution is
also inadmissible. We therefore conclude that

(7 ab+cd=n and ad—bc—cd=—n.
Adding up these two equations, we conclude that
a(b+ d) = be,

which is again impossible since ab > be. Hence n [(ab + cd).




If n|(ab—cd—bc) then from (4) and similar argument as above, we conclude
that n|(ad + bc) and that

ad+bc=n and ab-—cd—bc=—n.
This gives
ab+ ad = cd,
and that a|d, a contradiction. Hence n f(ab — cd — bc).
By (5) and Lemma 3, with ny = ab+ ed,ny = ab — ed — bc and n =
b% + bd + d?, we conclude that
ab+ cd

i (ab+ cd, b? — ¢?)

< b? + bd + d>.

Hence,

(ab+ cd,b? — ¢?) < ab + cd.
It remains to show that (ab+ cd, b® — ¢?) > 1. If (ab+ cd, b> — c?) = 1 then
the number

> ab+ cd
~ (ab+cd,b? — ?)

=ab+ cd

is a divisor of b% + bd + d?. But b? + bd + d? < ab+ ab+ cd = 2(ab) + cd <
2(ab + cd), implies that n = b? + bd + d*> = ab + cd. However, we have
seen previously (see (7)) that ab+ cd = n leads to a contradiction. Hence,
(ab + cd,b? — c?) > 1 and our proof is complete.

Concluding Remarks.

1. Expression (3) follows from the fact that 22 + 2y + »? is the norm of the

element z+yw € Q(v/—3), where w = 1+T )

and b + dw is n, the norm of (@ — cw)(b + dw) must be n%. Calculating
the norm explicitly, we find that the first identity holds.

. Since the norm of a — cw

. Proposition 2 and its proof are inspired by the proof given in [3, p. 55-
56] and [4, p. 225]. It is by coincidence that I turn to page 225 of W.
Sierpiiiski’s book and realize that the problem there is related to the
IMO’s problem.
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