Willie Yong

Apartment Block 551, Ang Mo Kio Avenue 10, No. 14–2224, Singapore 560551

Jim Boyd

St. Christophers School, 711 St. Christophers Road, Richmond, Virginia 23226, USA

Congruent Triangles – If You Look Carefully

In this article we present a series of problems with a common theme. That theme is the exploitation of the properties of congruent triangles to solve a variety of problems which at first glance do not seem to involve congruence at all. However, once the would-be solver produces or recognizes congruent triangles in each problem, he is then able to move straight ahead to a solution.

Problem 1. In $\triangle ADC$, \overline{DB} is perpendicular to \overline{AC} at B so that AB = 2 and BC = 3 as shown in Figure 1.1. Furthermore, $\angle ADC = 45^{\circ}$. Use this information to find the area of $\triangle ADC$.

Solution. Let us construct right $\triangle ADB_1$ with hypotenuse \overline{AD} so that $\triangle ADB_1$ is congruent to $\triangle ADB$ as shown in Figure 1.2. In like manner, we construct right $\triangle CDB_2$ with hypotenuse \overline{CD} so that $\triangle CDB_2$ is congruent to $\triangle CDB$. We then extend $\overline{B_1A}$ and $\overline{B_2C}$ to meet at D_1 .

Since $\triangle ADB_1 \cong \triangle ADB$ and $\triangle CDB_2 \cong \triangle CDB$, $\angle ADB_1 + \angle CDB_2 = \angle ADB + \angle CDB = \angle ADC = 45^\circ$. Therefore, $\angle B_1DB_2 = 90^\circ$.

Since $\angle B_1 = \angle B_2 = 90^\circ$ and the sum of the angles of quadrilateral $DB_1D_1B_2$ is 360° , it follows that $\angle D_1 = 90^\circ$ and that $DB_1D_1B_2$ is a rectangle. Since $DB = DB_1 = DB_2$, the rectangle is also a square. Therefore, $DB = D_1B_1 =$

Now $AB_1 = AB = 2$ so that $D_1A = D_1B_1 - AB_1 = DB - 2$. Similarly, $D_1C = DB - 3$.

Since $\triangle AD_1C$ is a right triangle, $D_1A^2 + D_1C^2 = AC^2 = (AB + BC)^2 = 25$. Therefore

$$(DB-2)^{2} + (DB-3)^{2} = 25$$
 or $2DB^{2} - 10DB - 12 = 0$.

It follows that DB = 6.

 D_1B_2 as well.

The area of $\triangle ADC$ is $\frac{1}{2}DB \cdot AC = \frac{1}{2}(5)(6) = 15.$

Problem 2. In the isosceles right triangle ABC of Figure 2.1, $\angle A = 90^{\circ}$ and AB = AC. Suppose that D is the interior point of the triangle so that $\angle ABD = 30^{\circ}$ and AB = DB. Prove that AD = CD.

Figure 2.1 Isosceles Right Triangle ABC.

Figure 2.2 $\triangle ABC$ with $\triangle AB'D \cong \triangle ABD$.

Solution. Let us construct $\triangle AB'D$ to be congruent to $\triangle ABD$ and then draw $\overline{B'C}$ as suggested by Figure 2.2.

Since AB = DB, $\angle BAD = \angle BDA$. Then it follows that $\angle BAD = 75^{\circ}$ since $\angle ABD = 30^{\circ}$. Since $\triangle AB'D$ has been constructed congruent to $\triangle ABD$, $\angle B'AD = 75^{\circ}$ as well. Then $\angle DAC = 90^{\circ} - 75^{\circ} = 15^{\circ}$.

We also have $\angle B'AC = \angle B'AD - \angle DAC = 60^{\circ}$. Since it is given that AB = AC and since AB = AB' by construction, it follows that AB' = AC. Therefore $\triangle AB'C$ is equilateral.

Since $\angle AB'D = \angle ABD = 30^\circ$, $\overline{B'D}$ must be the perpendicular bisector of \overline{AC} . Therefore, AB'CD is a kite and AD = CD as desired.

Problem 3. Isosceles triangle ABC is shown in Figure 3.1. In that triangle, $\angle A = \angle B = 80^{\circ}$ and cevian \overline{AM} is drawn to side \overline{BC} so that CM = AB. Find $\angle AMB$.

Figure 3.1 Isosceles triangle ABC.

П

Solution. Let us construct $\triangle MNC$ congruent to $\triangle ACB$ and draw \overline{NA} . We display the resulting situation in Figure 3.2.

Next, we observe that $\angle ACB = 20^{\circ}$ and $\angle NCM = \angle CAB = 80^{\circ}$. Therefore $\angle NCA = 80^{\circ} - 20^{\circ} = 60^{\circ}$. Then since triangles ACB and MNC are both isosceles and congruent, AC = NC. Therefore $\triangle NCA$ is equilateral and $\angle CNA = 60^{\circ}$. Thus $\angle ANM = 60^{\circ} - 20^{\circ} = 40^{\circ}$.

We also see that NA = NM. Therefore $\angle NMA = \angle NAM = \frac{180^{\circ} - 40^{\circ}}{2} = 70^{\circ}$. In addition, $\angle AMC = \angle NMA + \angle NMC = 70^{\circ} + 80^{\circ} = 150^{\circ}$. Thus

$$\angle AMB = 180^{\circ} - \angle AMC = 180^{\circ} - 150^{\circ} = 30^{\circ}.$$

Problem 4. Triangle ABC is a right triangle with $\angle A = 30^{\circ}$ and $\angle C = 90^{\circ}$. Segment \overline{DE} is perpendicular to \overline{AC} at D and AD = CB as indicated in Figure 4.1. Find DE if DE + AC = 4.

Figure 4.1 Right triangle ABC.

Figure 4.2 Right triangle ABCwith $\triangle BCF \cong \triangle ADE$

Solution. Let us construct $\triangle BCF$ congruent to $\triangle ADE$. The result is as displayed in Figure 4.2 because CB = AD. Since $\angle BCF$ is a right angle, points A, D, C, and F are collinear.

Now DE + AC = 4 implies that CF + AC = AF = 4 since CF = DE in congruent triangles BCF and ADE.

The congruence of the triangles also implies that $\angle CBF = \angle A = 30^{\circ}$. Therefore $CF = BF \sin 30^{\circ} = BF/2 = AF \sin 30^{\circ}/2 = AF/4 = 4/4 = 1$.

We conclude that DE = CF = 1.

Problem 5. The orthocenter H of $\triangle ABC$ is an interior point of the triangle. Find $\angle B$ if BH = AC. The feet of the altitudes from A and B are denoted by D and E, respectively. The geometry of the problem is shown in Figure 5.

Figure 5. Triangle ABC with orthocenter H

Solution. Since \overline{AD} and \overline{BE} are altitudes of $\triangle ABC$, $\angle ADC = \angle BDH = 90^{\circ}$. In right triangles ADC and BEC, $\angle CAD + \angle C = 90^{\circ}$ and $\angle CBE + \angle C = \angle DBH + \Box$

 $\angle C = 90^{\circ}$, respectively. Thus $\angle CAD = \angle DBH$. Since it has been given that BH = AC, it follows that $\triangle ADC \cong \triangle BDH$.

Therefore, AD = BD and $\triangle BDA$ is an isosceles right triangle. We see that $\angle ABC = 45^{\circ}$.

Problem 6. Each side of square ABCD has length 1 unit. Points P and Q belong to \overline{AB} and \overline{DA} , respectively. Find $\angle PCQ$ if the perimeter of $\triangle APQ$ is 2 units. The square is shown in Figure 6.1.

Figure 6.1 Square ABCD.

Solution. Let us extend \overline{AB} to E so that B is between A and E and BE = DQ. We also draw EC. We write that AP = x and AQ = y. Then PB = 1 - x and DQ = BE = 1 - y as indicated on Figure 6.2.

It is clear that $\triangle CDQ \cong \triangle CBE$ so that $\angle DCQ = \angle BCE$. It is also clear that $\angle QCE = 90^{\circ}$.

We see that

$$PE = (1 - x) + (1 - y) = 2 - (x + y) = PQ$$

since PQ + x + y = 2. Therefore $\triangle PCQ \cong \triangle PCE$. Therefore $\angle PCQ = \angle PCE = \frac{1}{2} \angle QCE = 45^{\circ}$.

Problem 7. We begin with $\triangle ABC$ and construct equilateral triangles ABD and ACE with their vertices D and E in the exterior of $\triangle ABC$. Segments \overline{DC} and \overline{EB} intersect at point P as shown in Figure 7.1. Find $\angle APD$.

Figure 7.1 $\triangle ABC$ with equilateral triangles ABD and ACE.

Solution. Since $\triangle ABD$ and $\triangle ACE$ are equilateral, AD = AB and AC = AE. Also, $\angle DAC = 60^{\circ} + \angle BAC = \angle BAE$. Therefore, $\triangle DAC \cong \triangle BAE$ by s.a.s. It follows that $\angle ADC = \angle ADP = \angle ABE = \angle ABP$.

Since segment \overline{AP} subtends congruent angles $\angle ADP$ and $\angle ABP$, points A, D, B, and P are concyclic. Figure 7.2 shows the circle with chord \overline{AP} and inscribed angles $\angle ADP$ and $\angle ABP$.

Since $\angle APD$ and $\angle ABD$ intercept the same arc, the angles have the same measure. Thus $\angle APD = \angle ABD = 60^{\circ}$.

Problem 8. Point *D* is an interior point of equilateral triangle *ABC*. It is given that DA = DB. Point *E* is also given so that $\angle DBE = \angle DBC$ and BE = AB. The geometry for this problem is displayed in Figure 8.1. Find $\angle E$.

Figure 8.1 Equilateral $\triangle ABC$ and $\triangle BDE$.

Figure 8.2 Equilateral $\triangle ABC$ and $\triangle BDE$ with CD added.

Solution. Let us draw \overline{CD} . Since CD = CD, AC = BC, and DA = DB, $\triangle ADC \cong \triangle BDC$. Therefore $\angle ACD = \angle BCD$. Figure 8.2 should make this argument clear.

It follows that $\angle ACD = \angle BCD = 30^{\circ}$. Since BE = AB = BC, $\angle DBE = \angle DBC$, and BD = BD, $\triangle BDE = \triangle BDC$. Thus $\angle E = \angle BCD = 30^{\circ}$.

We hope that our readers have enjoyed our problems and found them interesting exercises in geometrical reasoning.