Teik-Cheng Lim

Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 nnilimtc@nus.edu.sg

Number Patterns for Arithmetical Aesthetics

The mathematician's patterns, like the painter's or the poet's, must be beautifulBeauty is the first test: there is no permanent place in the world for ugly mathematics. The best mathematics is serious as well as beautiful.... The 'seriousness' of a mathematical theorem lies, not in its practical consequence, which are usually negligible, but in the significance of the mathematical ideas which it connects [1].

Godfrey Harold Hardy (1877-1947)

1. Introduction

Why do some simply fall in love with mathematics while others cringe at the word? There are many reasons, and one reason is in the way mathematics is viewed: whether as a subject to be studied or as a means for training the mind, whether for examination purposes or for application purposes, whether to impress or to be impressed, whether it is something to get over with or something beautiful. One possible way of expressing the beauty of mathematics is through exposing its pattern, particularly in the arrangement of numbers. Hence number patterns refer to numbers arranged in such a manner that shows forth some form of repetition, be it ascending order, descending order or palindromic. Since these patterns contain some form of sequencing, they are known for their beauty and at times brought up as mathematical recreation. In this article, we shall see how number patterns to surface. The three categories of arithmetic covered are addition, multiplication and squaring. As much as possible, these number patterns are reflected both in the LHS and RHS of the arithmetical equations.

2. Number Patterns in Arithmetic

Figure 1(a) shows summation of the form (mmm...)+(999...) where m = 1, 2, 3, ...9. A general pattern for these cases can be written as shown in Figure 1(b). It can be clearly seen that when m = 2, the result is a palindrome. Multiplications of the form $(mmm...) \times (999...)$ are furnished in Figure 2(a). The general pattern for multiplication shown in Figure 2(a) is depicted in Figure 2(b). Other cases of number pattern arising from multiplication involve $(333...) \times (666...)$ and $(222...) \times (555...)$, as shown in Figure 3. Again we note a palindromic pattern for the result of $(222...) \times (555...)$. Number patterns for squaring are given in Figure 4(a) for the cases of $(333...)^2$, $(666...)^2$ and $(999...)^2$. These patterns can be expressed more generally as described in Figure 4(b). Other number patterns in squaring, such as $(333...+m)^2$, $(666...+m)^2$ and $(999...+m)^2$ where $m = \pm 1$ and/or $m = \pm 2$, are displayed in Figures 5, 6 and 7 respectively.

3. Closure

Though number patterns may not find much application in technology and industry, their beauty cannot be denied. Number patterns, as objects of beauty, can present to the layman the aesthetic facet of mathematics, particularly that of numbers in a very lucid manner. And should number patterns spark the love of mathematics in the hearts of many a people, these patterns, then, are beautiful in more ways than one.

4. Exercise

Interested readers may want to work out these exercises to discover by themselves some interesting number patterns.

(a) Compare

```
1^2 =

11^2 =

111^2 =

1111^2 =

with (222...) × (555...) in Figure 3.

How are they related?
```

(b) Compute the following

n	f(n)	Fill answer in this column
1	1	=
2	1 + 2 + 1	=
3	1 + 2 + 3 + 2 + 1	=
4	1 + 2 + 3 + 4 + 3 + 2 + 1	
5	1 + 2 + 3 + 4 + 5 + 4 + 3 + 2 + 1	

What is the relation between f(n) and n?

(c) The following sequence has repetition of integer 9 on the LHS. Compute the integer sequence. (Hint: the answer is a palindrome, i.e. number pattern left to right is same as right to left).

n	f(n)	Fill answer in this column
1	$[9+2]^2$	=
2	$[99+2]^2$	
3	$[999+2]^2$	=
4	$[9999 + 2]^2$	== in ball ton ven artertag
5	$[99999 + 2]^2$	mot be demed. Mumber j=1

Is there an easier way to describe f(n)?

1 + 9	=	10	6+9	=	15		
11 + 99	=	110	66 + 99	=	165		
111 + 999	=	1110	666 + 999	=	1665		
1111 + 9999	=	11110	6666 + 9999	=	16665		
11111 + 99999	=	111110	66666 + 99999	=	166665		
2 + 9	=	11	7+9	=	16		
22 + 99	=	121	77 + 99	=	176		
222 + 999	=	1221	777 + 999	=	1776		
2222 + 9999	=	12221	7777 + 9999	=	17776		
22222 + 99999	=	122221	77777 + 99999	=	177776		
3 + 9	=	12	8+9	=	17		
33 + 99	=	132	88 + 99	=	187		
333 + 999	=	1332	888 + 999	=	1887		
3333 + 9999	=	13332	8888 + 9999	=	18887		
33333 + 99999	=	133332	88888 + 99999	=	188887		
4+9	=	13	9+9	=	18		
44 + 99	=	143	99 + 99	=	198		
444 + 999	=	1443	999 + 999	=	1998		
4444 + 9999	=	14443	9999 + 9999	=	19998		
44444 + 999999	=	144443	99999 + 99999	=	199998		
			man and a second second				
5 + 9	=	14					
55 + 99	=	154	8118				
555 + 999	=	1554	554425				
5555 + 9999	=	15554	55544445				
55555 + 99999	=	155554	5555444415				
		(:	a)				
		·					
		0		1	m 1		
	L				m-1		
n digits of	n	digits of	(n-1) di	gits	of		
integer m integer 9 integer m							

Figure 1. Number patterns of (a) (mmm...) + (999...) and (b) its generalized pattern for m = 1, 2, 3, ...9.

(b)

	1	$\times 9$		=	09	6 ×	9	=	54	
	11	× 99		=	1089	66 ×	99	=	6534	
	111	× 99	9	=	110889	666 ×	999	=	66 5 33 4	
	1111	× 99	99	=	11108889	6666 ×	9999	=	666 5 333 4	
	11111	× 99	999	=	1111088889	66666 ×	99999	=	6666 5 3333 4	
	2	$\times 9$		=	18	7×	9	=	63	
	22	× 99		=	2178	77 ×	99	=	7623	
	222	× 99	9	=	221778	777 ×	999	=	776223	
	2222	× 99	99	=	22217778	7777 ×	9999		77762223	
	22222	× 99	999	=	2222177778	77777 ×	999999	=	7777622223	
	3	$\times 9$		=	27	8 ×	9	=	72	
	33	× 99		=	3267	88 ×	99	=	8712	
	333	× 99	9	=	332667	888 ×	999	=	887112	
	3333	× 99	99	=	33326667	8888 ×	9999	=	88871112	
	33333	× 99	999	=	3333266667	88888 ×	99999	=	8888711112	
					10000					
	4	$\times 9$		=	36	9 ×	9	=	81	
	44	× 99		=	4356	99 ×	99	=	9801	
	444	× 99	9	=	443556	999 ×	999	=	998001	
	4444	× 99	99	=	44435556	9999 ×	9999	-	99980001	
	44444	× 99	999	= (4444355556	$999999 \times$	999999	=	9999800001	
	5	$\times 9$		=	45	14				
	55	× 99		=	5 4 4 5	154				
	555	× 99	9	=	55 4445	1554				
	5555	× 99	99	=	555 44445	15554				
	55555	× 99	999	=	5555 444445	15555d				
					(;	a)				
					(.	,				
_		-								
n		X	9	•••	\ldots = m	m	n - 1 9) - m	1 10 -	-
	digits of	f	n	digit	s of $(n-1)$	digits of	-	(n-1)	digits of	
in	integer m integer $(9-m)$									

(b)

m

Figure 2. Number patterns of (a) $(mmm...) \times (999...)$ and (b) its generalized pattern for m = 1, 2, 3, ...9.

3×6	=	18	2×5	=	1	×	10
33×66	=	2 178	22×55	=	121	×	10
333×666	=	22 1778	222×555	=	12321	×	10
3333×6666	=	222 17778	2222×5555	=	1234321	×	10
33333×66666	=	2222177778	22222×55555	=	123454321	×	10

Figure 3. Number patterns for $(333...) \times (666...)$ and $(222...) \times (555...)$.

3^{2}	=	09	9^{2}	=	81
33^{2}	=	1089	99^{2}	=	9801
333^{2}	=	110889	999^{2}	=	99800 1
3333^{2}	=	11108889	9999^{2}	=	99980001
33333^{2}	=	1111088889	99999^{2}	=	999980000 1
6^{2}	=	36			
66^{2}	=	4356			
666^{2}	=	443556			
6666^{2}	=	44435556			
66666^{2}	=	4444355556	C.S.S.B.D		

(a)

$$\underbrace{\left[\begin{array}{c}m \\ m\end{array}\right]_{n \text{ digits of}}^{2} = \underbrace{\left[(m/3)^{2} \\ (n-1) \text{ digits of}\right]_{(m/3)^{2} - 1} \underbrace{9 - (m/3)^{2} \\ (n-1) \text{ digits of}\right]_{(n-1) \text{ digits of}_{(n+1) \text{ digits of$$

Figure 4. Number patterns for (a) the square of (333...), (666...) and (999...), and (b) its generalized pattern with m = 3, 6, 9.

2^{2}	=	04	5^{2}	=	25
32^{2}	=	1024	35^{2}	=	12 2 5
332^{2}	=	110224	335^{2}	=	11222 5
3332^{2}	=	1110222 4	3335^{2}	=	1112222 5
33332^2	=	111102222 4	33335^{2}	=	111122222
4^{2}	=	16	therms for		
34^{2}	=	1156			
334^{2}	=	111556			
3334^2	=	11115556	1.93.00		
33334^2	=	1111155556	Poesso F		

5^{2}	=	25	82	=	64
65^{2}	=	4 2 2 5	6 8 ²	=	462 4
665^{2}	=	44222 5	66 8 ²	=	44622 4
6665^{2}	=	4442222 5	666 8 ²	=	4446222 4
6666 5 ²	=	4444222225	6666 8 ²	=	444462222 4
7^{2}	=	49	× 1993		
6 7 ²	=	4489			
667^{2}	=	44488 9	Steven		
666 7 ²	=	44448889			
66667^{2}	=	444488889			

Figure 6. Number patterns for the square of (666...+m).

7^{2}	=	49	82	=	64
97^{2}	=	9 4 0 9	9 8 ²	=	9 6 0 4
997^{2}	=	99400 9	99 8 ²	=	99600 4
999 7 ²	=	999 40009	999 8 ²	=	9996000 4
9999 7 ²	=	9999 400009	9999 8 ²	=	999960000 4

Figure 7. Number patterns for the square of (999...+m).

5. Answers to Exercise Problems

(a)
$$(222...) \times (555...) = 2 \sum_{i=0}^{n} 10^{i} \times 5 \sum_{i=0}^{n} 10^{i} = 10 \left(\sum_{i=0}^{n} 10^{i}\right)^{-1} \equiv 10 \times (111...)^{2}.$$

(b) $f(n) \equiv \left(\sum_{i=1}^{n-1} i\right) + n + \sum_{i=n-1}^{1} i = n + \sum_{i=1}^{n-1} [i + (n-i)] = n^{2}.$

+1.

Yes. Since
$$9 \sum_{i=1}^{n} 10^{i-1} = 10^{n} - 1$$
, then
 $\left(9 \sum_{i=1}^{n} 10^{i-1} + 2\right)^{2} \equiv f(n) = (10^{n} + 1)^{2} = 10^{2n} + 2(10)^{n}$

References

(c

[1] James R. Newman, ed., The World of Mathematics, pp.2027-2029.