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1. (IMO 2003 shortlisted problems.) Three distinct points A, B, C are fixed 
on a line in this order. Let r be a circle passing A and C whose centre does not 
lie on the line AC. Denote by P the intersection of the tangents to r at A and 
C. Suppose r meets the segment P B at Q. Prove that the bisector of LAQC 
and the line AC intersect at a point which does not depend on the choice of r. 
2. (Canada Mathematical Olympiad, 2003) Let S be a set of n points in the 
plane such that any two points of S are at least 1 unit apart. Prove there is 
a subset T of S with at least n/7 points such that any two points of T are at 
least v'3 units apart. 

3. (German National Mathematical Competition, 1st round, 2003.) Deter­
mine, with proof, the set of all positive integers that cannot be represented in 
the form % + ~ti, where a and bare positive integers. 

4. (Hong Kong Mathematical Olympiad, 2003) Let p be an odd prime such 
that p 1 (mod 4). Evaluate, with reasons, 

I: { k2}' 
k=1 p 

where { x} = x - l x J, l x J being the greatest integer not exceeding x. 

5. (British Mathematical Olympiad, 2003) Let f : N -----+ N be a permutation 
of the set N of all positive integers. 

(i) Show that there is an arithmetic progression of positive integers a, a+ 
d, a+ 2d, where d > 0, such that 

f(a) < f(a +d) < f(a + 2d). 

(ii) Must there be an arithmetic progression a, a+ d, ... , a+ 2003d, where 
d > 0 such that 

f(a) < f(a +d) < · · · < f(a + 2003d)? 

6. (Vietnam 2003) Two circles r1 and r2 with centres 01 and 02, respectively, 
touch each other at the point M. The radius of r 2 is larger that of r 1 . A is a 
point on r 2 such that the points 0 1 , 0 2 and A are not collinear. Let AB and 
AC be tangents of r 1 with touching points B and C. The lines M B and M C 
meet r 2 again at E and F, respectively. Let D be the point of intersection of 
the line EF and the tangent to r 2 at A. Prove that the locus of Dis a straight 
line when A moves on r 2 so that 0 1 , 0 2 and A are not collinear. 

7. (Hong Kong Mathematical Olympiad, 2003) Two circles intersect at points 
A and B. Through the point B a straight line is drawn, intersecting the first 



circle at K and the second circle at M. A line parallel to AM is tangent to the 
first circle at Q. The line AQ intersects the second circle again at R. 

(a) Prove that the tangent to the second circle at R is parallel to AK. 

(b) Prove that these two tangents are concurrent with K M. 

8. (Belarus Mathematical Olympiad, 2003) Let 

where p and q are positive integers. 

(a) Given that a 1 = a2 , prove that 3n is a perfect square. 

(b) Prove that there exist infinitely many pairs (p, q) of positive integers p 
and q such that the equality a 1 = a 2 is valid for the polynomial p(x). 

9. (Russia Mathematical Olympiad, 2003) Find the greatest natural number 
N such that for any arrangement of the natural numbers 1, 2, ... , 400 in the 
cells of a 20 x 20 square table there exist two numbers located in the same row 
or in the same column such that their difference is not less than N. 

10. (Czech and Slovak Mathematical Olympiad, 2003) Find all possible values 
of the expression 

a2b2 + a2c2 + b2c2' 

where a, b, c are the lengths of the sides of a triangle. 



1. (Bulgaria Mathematical Olympiad, 1994) A triangle ABC is given with 
p = ~(AB + BC + CA). A circle k1 touches the side BC and the sides AB, 
AC extended. A circle k touches k1 and the incircle of ~ABC at points Q and 
P. Let R be the point of intersection of the line PQ and the bisector of L.BAC 
and RT be a tangent to k. Prove that RT = y'p(p- a). 

Solution by Calvin Lin Ziwei. 

We first prove the following lemma. 
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Lemma. C1 and C2 are 2 non-intersecting circles. An external tangent touches 
C1 at D and C2 at E. DE and 0 10 2 meet at A. A third circle is tangent to 
C 1 at P, C2 at Q. Then P, Q, A are collinear. Conversely, if a line through A 
intersects C 1 at P', P and C2 at Q, Q', in that order, then there is a third circle 
that touches C1 at P and C2 at Q. Moreover, PQED is cyclic. 

Proof. Let the radii of C1 and C2 be r 1 and r 2 , respectively. Let PQ intersect 
0 1 02 at R and C2 again at Q'. Then 

Therefore ~RP01 ~ ~R02Q' whence ROd R02 = rl/r2. First we note that 
AOI/A02 = rl/r2 because ~AD01 ~ ~AE02 . Therefore R =A. 

We shall now prove the converse. First we note that AD/ AE = rl/r2 
(because ~AD01 ~ ~AE02 ). Thus A is the centre of the homothety that 
takes C1 to C2 with positive ratio. This homothety takes 0 1 to 0 2 and P to 
Q'. Therefore L.AP01 = L.AQ'02. Let 0 be the intersection of 0 1 P with 02Q. 
Then 

L.OPQ = L.AP01 = L.AQ'02 = L.02QQ' = L.OQP. 

Thus OP = OQ and the circle with centre 0 and radius OP is the required third 
circle. To prove that PQED is cyclic we first note that L.AP D = L.AQ' E by 
the homothety. By the alternate segment theorem, we get L.AQ' E = L.QED, 
whence L.APD = L.QED. Therefore PQED is cyclic and the proof of the 
lemma is complete. 

To solve the problem, observe that by the lemma, A= R. Considering the 
power of R with respect to the third circle, we get RT2 = RP · RQ. If the incircle 
touches the side AB at D and E, respectively, we get AD = p- a and AE = p. 
Using the fact that PQED is cyclic, we get RT2 = RP·RQ = AD·AE = (p-a)p 
as required. 

2. (Russia 2000) A positive in n is called perfect if the sum of all its positive 
divisors excluding n itself, equals n. For example 6 is perfect because 6 = 
1 + 2 + 3. Prove that 

(a) if a perfect integer larger than 6 is divisible by 3, then it is also divisible 
by 9. 



(b) if a perfect integer larger than 28 is divisible by 7, then it is also divisible 
by 49. 

Solution by Daniel Chen Chongli. For any positive integer n, let l7(n) denote 
the sum of all its positive divisors. Thus a number n is perfect if and only if 
l7(n) = 2n. It's easy to prove that l7(mn) = l7(m)l7(n) if m, n are coprime. 

(a) Let n(> 6) be a perfect number such that 3 I n. Suppose on the contrary 
that 9 f n. Then, letting n = 3a, 

2n = l7(n) = l7(3a) = l7(3)l7(a) = 4l7(a). 

Thus 2 I n. Since n > 6, 1, n/2, n/3, n/6 are distinct factors of n. Thus 

n :2: 1 + n/2 + n/3 + n/6 = n + 1, 

a contradiction. Thus 9 I n. 

(b) Let n(> 28) be a perfect number such that 7 I n. Suppose on the 
contrary that 49 f n. Then, letting n = 7 a, we have 

2n = l7(n) = l7(7)l7(a) = 8l7(a). 

Thus 4 I n. Since n > 28, 1, n/28, n/14, n/7, n/4, n/2 are distinct factors of n. 
Thus 

n :2: 1 + n/28 + n/14 + n/7 + n/ 4 + n/2 = n + 1, 

a contradiction. Thus 49 I n. 

Also solved by A. Robert Pargeter, who pointed out that (1) no one has yet 
discovered an odd perfect number but it is known that if such exist they exceed 
10300 ; and (2) all even perfect numbers are of the form 2n-I(2n- 1), where 
2n - 1 is prime. 

3. (Russia 2000) Circles WI and w2 are internally tangent at N, with WI 
larger than w2 . The chords BA and BC of WI are tangent to w2 at K and 
M, respectively. Let Q and P be the midpoints of the arcs AB and BC not 
containing the point N. Let the circumcircles of triangles BQK and BP M 
intersect at Band BI. Prove that BPBIQ is a parallelogram. 

Similar solution by Joel Tay Wei En, Charmaine Sia Jia Min and Ong Xing 
Gong. 

Q 

N 

Since the tangent at Q is parallel to AB, the homothety with centre N, 
taking w2 to WI takes K to Q. Thus Q, K, N are collinear. Similarly, P, M, N 
are collinear. So LBBIK + LBBIM = 180° - LBQK + 180° - LBP M = 
360°- LBQN- LBPN = 180°, and thus K, BI, Mare collinear. Next we have 
LBQBI = LBKBI = LBMBI = LBPBI and 

LPBQ = 180°- LKNM = LMKN + LKMN 

= LBMP + LQKB = LBBIP + LQBIB = LQBIP. 
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Thus BP B 1 Q is a parallelogram 

4. (Taiwan 2000) Let A = {1, 2, ... , n}, where n is a positive integer. A 
subset of A is connected if it is a nonempty set which consists of one element or 
of consecutive integers. Determine the greatest integer k for which A contains 
k distinct subsets A1 , A2 , ... , Ak, such that the intersection of any two distinct 
sets Ai and Aj is connected. 

Similar solution by Joel Tay Wei En and Ong Xing Gong. For any i #- j, if 

max{Ai} = max{Aj} and min{Ai} = min{Aj}· 

then AinAj contains min{Ai} and max{Ai} and thus must contain all the num­
bers between these two, whence Ai = Aj. Hence the pairs (min{Ai}, max{Ai} ), 
(min{Aj},max{Aj}), i #- j, are distinct. Moreover, maxAj;?:: min{Ai} other­
wise their intersection is empty. So there exists m such that min{Ai} :::;; m :::;; 
max{Ai} for all i. Therefore 

k:::;; m x (n- m + 1):::;; l(n + 1)/2J f(n + 1)/2l 

The maximum is achieved by taking all connected sets containing the element 
l(n + 1)/2 J. Thus the answer is l(n + 1)/2Jl (n + 1)/2l 

5. (Turkey 2000) 

(a) Prove that for each positive integer n, the number of ordered pairs (x, y) 
of integers satisfying 

is finite and divisible by 6. 

(b) Find all ordered pairs ( x, y) of integers satisfying 

Similar solution by Andre Kueh Ju Lui, Charmaine Sia Jia Min and A. Robert 
Pargeter. 

(a) Theating the equation as a quadratic in x, we get y2 - 4(y2 - n) ;?:: 0. 
Thus 3y2 :::;; 4n. Similarly 3x2 :::;; 4n. Thus the number of solutions is finite. We 
also note that if (x, y) is a solution, then so are (y, x), ( -x, -y), (x, x- y). Thus 
from ( x, y), we can generate 

(x, y), (y, x), (x, x- y), (y, -y- x), (y- x, y), (x- y, x), 

(y- x, -x), (x- y, -y), ( -y, x- y), ( -x, y- x), ( ~y, -x), ( -x, -y). 

These 12 solutions are distinct if x-I- y and both are nonzero. Moreover, anyone 
of these will generate the same family of 12. In the other case, we have the family 
of six 

(x, x), (x, 0), ( -x, 0), (0, x), (0, -x), ( -x, -x). 

Thus the number of solutions is always a multiple of 6. 

(b) From y2 
:::;; 4n/3, we get -32 < y < 32. Also the discriminant 2908-3y2 

must be a perfect square. This is so only for y = 13, 18, 31. They yield the same 
family: 

(31, 13), (13, 31), (31, 18), (13, -18), (18, 31), ( -18, 13), 
(18, -13), ( -18, -31), ( -13, 18), ( -31, -18), ( -13, -31), ( -31, -13). 



6. (Vietnam 2000) Two circles C1 and C2 intersect at two points P and Q. The 
common tangent of C1 and C2 closer to P touches C1 at A and C2 at B. The 
tangent to C1 at P intersects C2 at E (distinct from P) and the tangent to C2 
at P intersects C1 at F (distinct from P). Let H and K be two points on the 
rays AF and BE, respectively, such that AH = AP, BK = BP. Prove that 
the five points A, H, Q, K, B lie on the same circle. 

Solution by A. Robert Pargeter. We are asked in effect to prove that H and K 
lie on the circumcircle of L:.AQB. By symmetry what goes for H goes for K, 
so it is sufficient to prove the result for (say) H. 

Forget about Hand let BP produced meet AF at G. Join G, A, P and B to 
Q. Then, using the notation of the figure, 

a 1 = a 2 (by the alternate segment theorem.) 

fJ1 = fJ2 (by the alternate segment theorem.) 

')'1 = ')'2 (by the alternate segment theorem.) 

')'1 = '/'3 (angles in the same segment) 

Therefore ')'3 = ')'2, whence AGQ B is cyclic. Therefore 62 = a2 + (31. Also 
61 = a 1 + (31. Therefore 61 = 62 and AG = AP, so that G is in fact the point 
H of the problem which is thereby solved. (We have in fact proved that BP H 
is a straight line.) 

Also solved by Kenneth Tay Jingyi and Charmaine Sia Jia Min. 

7. (St. Petersburg 2000) One hundred points are chosen in the coordinate 
plane. Show that at most 2025 = 452 rectangles with vertices among these 
points have sides parallel to the axes. 

Solution by Andre Kueh Ju Lui. Consider only rectangles whose sides are par­
allel to the axes. Suppose on the contrary that there are more than 2025 such 
rectangles. Let each rectangle give a value 1 to each of its vertices. Then the 
total value is .2: 4 x 2026. Since there are 100 points, there is a point whose 
value is at least 82. Without loss of generality, let this point be the origin. Each 
of the 82 rectangles contain one point not on the axes and distinct rectangles 
are associated with distinct points (not on the axes). Thus there are at least 82 
points not on the axes and so there are at most 17 points (other than the origin) 
on the axes. If there are x points on the x-axis and 17 - x points on the y-axis, 
then there are at most x(17- x) :::; 8 x 9 = 72 rectangles, a contradiction. Thus 
there are at most 2025 such rectangles. 
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8. (St. Petersburg 2000) Let AA1 , BB1 , CC1 be the altitudes of an acute 
triangle ABC. The points A2 and C2 on line A 1 C1 are such that line CC1 
bisects the segment A 2 B 1 and line AA1 bisects the segment C2B 1 . Lines A 2 B 1 
and AA1 meet at K, and lines C2B 1 and CC1 meet at L. Prove that lines K L 
and AC are parallel. 

Solution by Joel Tay Wei En. We have .CAA1B 1 = .CC1CB1 (since HB1CA1 is 
cyclic), .CAA1C1 = LB1BC1 (since HA1BC1 is cyclic) and .CABB1 = .CC1CA 
(since BCB1C1 is cyclic). Therefore AA1 bisects LB1A 1C1. Similarly, BB1 
bisects LA1B 1C1. Thus His the incentre of 6A1B 1C1. 

B 
B 

A B1 C A B1 C 

Since CC1 bisects A 2 B 1 and AA1 bisects B 1L, we have CC1 _!_ B 1A 2 and 
AA1 _!_ B 1L. Thus His the orthocentre of 6B1KL and hence KL j_ BB1. 
Thus K L II AC as required. 

Also solved by Kenneth Tay Jingyi. 

9. (Korea 2000) The real numbers a, b, c, x, y, z satisfy a > b 2:: c > 0 and 
x 2:: y 2:: z > 0. Prove that 

a2x2 b2y2 c2 z2 3 --,-----,......,....---...,- + + > -0 

(by+ cz)(bz + cy) (cz + ax)(cx + az) (ax+ by)(ay + bx) - 4 

Similar solution by Charmaine Sia Jia Min and Kenneth Tay Jingyi. Since 
a 2:: b 2:: c > 0 and x 2:: y 2:: z > 0, we have, by the rearrangement inequality, 
by+ cz 2:: bz + cy, etc. Thus 

LHS (ax)2 (by)2 (cz)2 
2:: (by+ cz)2 + (cz + ax)2 + (ax+ by)2 · 

Letting p = ax, q =by, r = cz, we have p 2:: q ;::::: r > 0 and p2 + q2 ;::::: p2 + r 2 ;::::: 
q2 + r 2 . By the power mean inequality and then the rearrangement inequality, 
we get 

p2 q2 r2 p2 q2 r2 
-:----:-::- + + > + + --:----=--------::c:-
(q + r)2 (p + r)2 (p + q)2 - 2(q2 + r2) 2(p2 +r2) 2(p2 + q2) 

1 ( 2p2 2q2 2r2 ) 1 ( [ q2 r2 p2 ] 
=- + + >- + +-----::---:-

4 q2 + r2 p2 + r2 p2 + q2 - 4 q2 + r2 p2 + r2 p2 + q2 

+ [ q2 ~ r2 + p2: r2 + p2 ~ q2] ) = ~ · 



10. (Mongolia 2000) The bisectors of angles A, B, C of L::.ABC intersect its 
sides at points A1, B1, C1. Prove that if the quadrilateral BA1B1C1 is cyclic, 
then 

BC AC AB 
AC+AB AB+BC BC+AC. 

Solution by A. Robert Pargeter. If BA1B 1 C1 is cyclic, then LB1 C1A1 = 

LB1BA1 = LC1BB1 = LC1A1B1. Therefore B1C1 = B1A1; and LAC1B = 
LBA1B 1. Thus the triangles AB1C1 , CB1A can be fitted together to make a 
single triangle (see figure). 

c 

A 

B 

A' 

B' 1 

C' 

Using theorem that the bisector of an angle of a triangle divides the opposite 
side in the ratio of the other 2 sides, we easily find: 

be 
AC1 = --b, 

a+ 
AB =~ 1 e+ a' 

Clearly the "new" triangle A' B~ C' is equiangular to ABC. Therefore 

i.e., 

i.e., 

A'C' AC b 
A'B' AB e 1 

be ab b be 
--+--=-X--
a+b b+e e e+a 

e a b 
--+--=-­
a+b b+e e+a 

which is what we want to prove. 

Also solved by Kenneth Tay Jingyi. 
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