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ABSTRACT. This paper examines a proof of an Euclidean geometry problem 

which appears rather straightforward but turns out to be somewhat more chal

lenging than it first appears. One original solution to this problem suggests that it 

is over-specified as originally stated and that not all given information is required 

for a complete solution. The implications of this discovery are then discussed in 

detail and generalized. 

1. Introduction 
The ideas that contributed to the contents of this paper came initially as much of a 

surprise to the authors. It started off when one of the authors brought up a prob

lem (Weeks and Adkins [1]; 1961; p. 257) while casually discussing mathematical 

problem solving among a group of colleagues. It turned out that this 'old' problem 

generated a great amount of interest among the authors and it seemed that new 

solutions and perspectives were offered each time discourse over the problem took 

place over a couple of weeks. This paper is thus a sharing of some of the insights 

gained as we investigated different approaches to the problem. 

On hindsight, as the authors reflect on this short enjoyable journey of joint-problem 

solving, it was discovered that the value of the enterprise is not merely in the des

tination, i.e., the solutions, but also in the process taken together. The process 

involved, among other things, opportunities to verbalise one's 'attack route' to the 

problem, clarify working steps, offer alternative routes, take time off to mull over the 

problem, and to seek extensions to the problem. Incidentally, these moves closely 

mirror the desired practices of project work groups that take an interest in solving 

mathematics problems. As the schools begin their journey to involve more students 

in problem solving projects, it is hoped that the direction of progress presented in 

this paper can offer an example of how schools mathematics projects can develop. 

The reader can thus discern two 'tracks' in this paper. The track at the foreground 

shows the mathematics involved in the solution strategies to the problem; the other 

parallel track models the underlying process one can use when faced with a mathe

matics problem to solve. The original problem is stated below: 
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In 6ABC, the altitude AD, the angle bisector AE and the median AF divide 

LBAC into four equal parts. Prove that LBAC = goo. (Weeks [1]; 1g61; Page 

257). Now it is restated as follows. 

Problem 1. Given ABC is a triangle, 

ADl_BC, AE is the bisector of LBAC 

and F is the midpoint of BC, LEAF = 
LFAE = LEAD = LDAC. Prove that 

LBAC =goo. 

A 

B~C 
Figure 1. 

This paper will not provide new solutions directly to Problem 1, since ten solutions 

have been given in [2]. But in the following sections, we shall generalize this problem, 

and provide solutions to new problems. The solutions to those new problems are 

also solutions to Problem 1. 

2. Generalization 
A close examination of one solution of Problem 1 in [2] reveals that not all the 

conditions were used in the proof. In particular, a revision of the original condition 

LEAF= LFAE =LEAD= LDAC 

to a weaker condition LEAF = LDAC will yield the same result. The original 

problem is therefore revised as follows. 

Problem 2. Given ABC is a triangle, ADl_BC, F is the midpoint of BC and 

LEAF= LDAC. Prove LBAC =goo. 

Furthermore, we shall show that every condition in Problem 2 is necessary. So 

instead of proving Problem 2, we shall prove the following problem, by which the 

result of Problem 2 follows as a corollary. 

Problem 3. Let ABC be a triangle, and D and F be two points on BC. Then any 

one of the four conditions below follows from the other three: 

(1) ADl_BC; 

(2) F is the midpoint of BC; 

(3) LEAF= LDAC; and 

(4) LBAC =goo. 
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A 

G 

Figure 2. 

Solution: Let L.BAF =a, L.ABF =band L.FAD =c. Draw line GF such that 

G is on AB and GF l_BC, and connect GC, as shown in Figure 2. 

It suffices to show that 

(i) under conditions (2) and (3), (1) and (4) are equivalent; and 

(ii) under conditions (1) and (4), (2) and (3) are equivalent. 

(i) Assume that conditions (2) and (3) are given. Since L.CAD = L.BAF, L.CAF = 

a+ c. Since GF is the perpendicular bisector of BC, L.CGF = L.BGF. Thus 

ADl_BC -¢:::::::} GF II AD (since GF l_BC) 

-¢:::::::} L.CGF = L.BGF = L.BAD =a+ c = L.CAF 

-¢:::::::} A, G, F and C are concyclic 

-¢:::::::} L.GAC = L.GFC =goo. 

Hence (1) and (4) are equivalent. 

(ii) Assume that conditions (1) and (4) are given. 

Since L.GFC =goo and L.BAC =goo, the four points A, G, F and Care concyclic. 

Thus 

L.GCF = L.BAF =a. 

Since ADl_BC and GF l_BC, 

L.ABC + L.ACB =goo= L.DAC + L.ACB, 

implying that 

Thus 

L.DAC = L.ABC =b. 

BF = CF -¢:::::::} 6GFB ~ 6GFC (since GF l_BC) 

-¢:::::::} L.GCF = L.ABC 

-¢:::::::} L.DAC = b = L.ABC = L.GCF =a= L.BAF. 

Hence (2) and (3) are equivalent. D 



3. Algebraic solutions 
One way to extend a problem is to loosen some of the original limiting conditions 

and explore the results as a consequence of this 'adjustment'. This is the approach 

taken in the final section of this paper. 

The reader will note that one of the necessary conditions for the same result to hold 

in both the above problems is that "F is the midpoint of BC". In other words, "F 

divides segment BC in the ratio 1 : 1". What happens if this condition is generalized 

to one where "F divides segment BC in the ratio x: (1- x)"? The following shows 

the formal statement of the extended problem and attempts to obtain some results. 

Let BC = 1 and BF = x. So 0 < x < 1. Let L.F AD= {3. Since ADl_BC, we have 

0 < {3 < 90°. We try to express L.BAC as a function of x and {3. 

A 

Problem 4. Given ABC is a triangle, 

ADl_BC, and L.BAF = L.DAC. Let x = 

~~ and L.F AD= {3. Prove that 

cot L.BAC = (1- 2x) cot {3. B~C F D 

Figure 3. 

Solution. Without loss of generality, we assume BC = 1 unit, and let AD = h 

unit, let L.BAF = L.CAD = o:. So BF = x unit. It can be seen that 

hence 

(1) 

BF = x = 1- htano:- htan{3, 

1-x 
tano: + tan{3 = -h-. 

From another perspective, x can also be seen as ED- FD, so that 

X 

h 

h (tan( a:+ {3)- tan{3), 
X 

tan( o: + {3) -tan {3 · 

Substituting this expression of h into (1), we have 

tan o: + tan {3 -- -tan 1- x ( tano: + tan{3 {3) 
x 1 - tan o: tan {3 

(1 - x) tan o:(1 + tan2 {3) 
x(l -tan o: tan {3) 
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Upon further simplifying, 

tan a(1 - 2x + tan2 {3) 

tan a 

1- tan2 a 

tan2a 

Then using the addition formula: 

tan(2a + {3) 

xtan{3(1- tan2 a) 

x tan{3 

1- 2x + tan2 {3 
2xtan{3 

1 + tan2 {3 - 2x · 

tan 2a + tan {3 

1- tanatan2{3 
tan{3 
1- 2x 

The details in the above proof are easy to verify and left to the readers. 0 

Remarks. 

The results in Problem 4 includes more information than Problem 2. 

(i) For all {3 with 0 < {3 < goo, 

{ 

=goo 

LBAC >go< 
<goo, 

if X= 1/2; 

if X> 1/2; 

if X < 1/2. 

(ii) Since 0 < x < 1, we have -cot {3 <cot LBAC <cot {3. Thus 

{3 < LBAC < 180° - {3. 

(iii) When x tends to 0, LBAC approaches {3; when x tends to 1, LBAC ap-

proaches 180°- {3. 

In the end of this section, we show that the two variables 'x' and '{3' in Problem 4 

are independent, provided the conditions that 0 < x < 1 and 0° < {3 < goo. 

Let x and {3 be any variables with 0 < x < 1 and 0° < {3 < goo. We can construct a 

triangle ABC with a point F on BC such that BF: BC = x: 1 and LF AD= {3, 

where AD is the height of L:.ABC on the side BC. 

A 

B' 

Figure 4. 



Step 1: Construct L_B' AC' such that cot L_B' AC' = (1 - 2x) cot (3. Since 0 < x < 1, 

we have f3 < L_B' AC' < 180°- {3. 

Step 2: Draw the bisector AE of L_B' AC'. 

Step 3: Draw L_F' AD' within L_B' AC' such that L_F' AD' = f3 and AE is also the 

bisector of L_F' AD'. 

Step 4: Draw any line BC such that BC ..lAD', cutting AB', AF', AD' and AC' at 

points B,F,D and C, respectively. Since L_B'AD' < 90°, such a line BC 

exists. 

The above construction yields that cot L_BAC = (1 - 2x) cot {3, L_F AD = {3, 

AD..lBC and L_BAF L_CAD. If BF : BC = y, it follows from Problem 4 

that 

1 _ 2y = cot L_BAC = 1 _ 2x 
cot f3 ' 

implying that y = x. Hence BF: BC = x. 
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