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11. Distance between Two Vertices 
Consider the connected graph H of Figure 11.1. 

a 

H: 

p r 

Figure 11.1 

As H is connected, every two vertices in H are joined by at least one path. Take, 

for instance, the two vertices g and h, and observe that gpcbarh is a g- h path in 

H. The length of a path is defined as the number of edges contained in it. Thus 

the length of the above g- h path is 6. Some other g- h paths of different lengths 

are given below: 

g- h path Length 

gabcrh 5 

gbcfh 4 

garh 3 

The smallest length of the above g - h paths is 3. Is there any g - h path of length 

less than 3 in H? The answer is 'NO'. Thus, 3 is the minimum among the lengths 

of all g- h paths in H. In this situation, we say that the distance between g and 

h is 3, and we write d(g, h) = 3. 

In general, let G be a connected multigraph and let u, v E V (G). The length of the 

u- v walk: u = vov1 v2 · · · Vk = v is defined as k (note that the Vi's are not necessarily 

distinct; also, for the definition of a 'walk', see page 12 in [9]). In particular, the 

length of a path is the number of edges contained in it. The distance between u and 

v in G, denoted by de ( u, v), or simply d( u, v) if the graph G under consideration is 
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G 

clear from the context, is defined as the minimum of the lengths of all u- v paths 

in G. Thus, for the graph H of Figure 11.1, we have: 

d(c, f) = d(p, c) = 1, d(g, c)= d(b, r) = 2, d(g, h) = d(a, f) = 3; 

and that there exist no two vertices with their distance exceeding 3. 

As we shall see, the notion of 'distance' is an important tool in studying the structure 

of a graph, and plays also a prominent role in applications of graphs. 

Some basic properties of 'distance' are stated below (see Exercise 11.4). Let x, y, z E 

V(G). Then 

(11.1) d(x, x) = 0, 

(11.2) d(x, y) > 0 if x =!= y, 

(11.3) (the symmetric property) d(x, y) = d(y, x), 

(11.4) (the triangle inequality) d(x, y) + d(y, z) 2: d(x, z). 

Exercise 11.1. In the graph H of Figure 11.1, find d(b,p), d(b, h) and d(a,p). 

Exercise 11.2. In the graph H of Figure 11.1, find 

(i) three vertices x, y, z such that d(x, y) + d(y, z) = d(x, z); 

(ii) three vertices x, y, z such that d(x, y) + d(y, z) > d(x, z). 

Exercise 11.3. Let G be a connected multigraph and let u,v E V(G). Show that 

every u - v walk in G always contains a u - v path. 

Exercise 11.4. Prove the results {11.1)- (11.4}. 

Exercise 11.5. For each integer n > 1, construct a graph of order n such that 

d(x, y) = 1 for any two distinct vertices x, y in G. 

Exercise 11.6. For each integer n > 1, construct a graph G of order n such that 

for each integer k with 0 < k < n, there exist two vertices x, yin G with d(x, y) = k. 

Exercise 11.7. Let G be a connected multigraph and let u, v E V (G). Show that 

for each integer k with 0 < k < d( u, v), there exists w E V (G) such that d( u, w) = k. 

Exercise 11.8. Let H be a connected subgraph of a connected graph G. Show 

that dc(u,v) ~ dH(u,v) for any two vertices u,v in H. 

12. Eccentricity, Radius, Diameter and Centre 
Consider the vertex a in the graph H of Figure 11.1. Which vertices in H are 

furthest from a? It can be checked that f is the only such vertex. What is d(a, f)? 

The answer is 3. This '3', which measures the distance between a and a vertex 

furthest from a, is called the eccentricity of the vertex a in H. 



In general, let G be a connected multigraph and v E V(G). The eccentricity of v, 

denoted by e( v), is the distance between v and a vertex furthest from v in G. That 

is, 

(12.1) e(v) = max{d(v,x): x E V(G)}. 

As an example, the eccentricities of the six vertices in the graph G of Figure 12.1 

are shown in parentheses. 

c (2) 

G: 

f (2) 

Figure 12.1 

Among the six eccentricities shown in the figure, we notice that '2' is the smallest 

while '4' is the largest. In this situation, we say that the radius of G is 2 and the 

diameter of G is 4. Note also that there are two vertices in G, namely c and J, 
with least eccentricity (i.e., e(c) = e(f) = 2). Each of them is called a central 

vertex, and the set of these two central vertices is called the centre of G. 

In general, given a connected multigraph G, the radius of G, denoted by rad(G), 

is defined by 

(12.2) rad(G) = min{e(v): v E V(G)} 

and the diameter of G, denoted by diam(G), is defined by 

(12.3) diam(G) = max{e(v): v E V(G)}. 

A vertex winG is called a central vertex if e(w) = rad(G), and the centre of G, 

denoted by C (G), is the set of all central vertices of G. 

In the graph G of Figure 12.2, the eccentricities of the twelve vertices are shown in 

parentheses. 

• .. .. 
•• • .. • 

v
6
(3) v

7
(3) 

.. 
Vg(S) Vn (4) 

Figure 12.2 
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By (12.2) and (12.3), rad(G) = 3 and diam(G) = 5. The graph G has two central 

vertices, namely, V6 and V7 . Thus, C( G) = { v6, V7 }. If G represents the street 

network of a small town, then, geographically, the junctions v6 and v7 are really 

situated at the 'town centre'. 

While diam( G) = 5 by (12.3) as pointed out above, we note also that there exist 

at least two vertices, for instance, v1 and v12, in G such that d(v1, v12) = 5, and 

d(x, y) ::; 5 for any other two vertices x, yin G. As a matter of fact, it can be shown 

(see Exercise 12.2) that for any connected multigraph G, 

(12.4) diam(G) = max{d(x,y): x,y E V(G)}. 

The above notions of radius, diameter and centre of a graph are, actually, borrowed 

from those of a circle in plane geometry as shown in Figure 12.3, where r and d 

denote, respectively, the radius and diameter of the circle with centre 0. While 

d = 2r for a circle, is there any relationship between rad( G) and diam( G) for a 

graph G? 

Figure 12.3 

It follows immediately from (12.2) and (12.3) that rad(G) ::; diam(G). On the other 

hand, for the graph G of Figure 12.1, we have diam( G) = 4 = 2 rad( G), whereas for 

the graph G of Figure 12.2, we have diam(G) = 5 < 6 = 2rad(G). Indeed, these 

are just two instances of the second inequality established below. 

Theorem 12.1. Let G be a connected multigraph. Then 

(12.5) rad(G) ::; diam(G) ::; 2 rad(G). 

Proof. We need only prove that diam(G) ::; 2 rad(G). By (12.4), let u, v be two 

vertices in G such that d(u,v) = diam(G). Let wE C(G) (i.e., e(w) = rad(G)). We 

then have 

diam(G) d(u, v) 

< d(u,w)+d(w,v) (by(11.4)) 

d(w, u) + d(w, v) (by (11.3)) 

< e(w) + e(w) (by (12.1)) 

2e(w) 

2rad(G), 



as was to be shown. D 

In the graph G of Figure 12.1, its centre C(G) consists of two vertices, and the 

induced subgraph [C(G)] (see page 112 in [10]) is isomorphic to 02. In the graph 

G of Figure 12.2, its centre C( G) also consists of two vertices, but the induced 

subgraph [C(G)] is isomorphic to K2. One can see also from Exercise 12.1 that the 

subgraphs induced by the centres of the three graphs are pairwise non-isomorphic. 

Suppose now we are given a graph, say, H of Figure 12.4, and we ask: Is there a 

graph G such that [C(G)] ~ H? 

H: 

Figure 12.4 

Construct a new graph G from H by adding four new vertices w, x, y, z such that x 

is adjacent only tow and all vertices in H, and, similarly, y is adjacent only to z and 

all vertices in Has shown in Figure 12.5. It can be checked that [C(G)] =H. In [11], 

Kopylov and Timofeev stated, without proof, that for any graph H, there always 

exists a graph G such that [C(G)] ~H. The above method of constructing G 

from H was, however, due to Hedetniemi as pointed out in [2]. 

G: 

Figure 12.5 

Suppose we want to find a suitable location for a police station in a new town. What 

would our considerations be? Certainly, one consideration would be to minimize the 

longest time taken to reach any other place in town. Using a graph to model the 

new town, this requirement can be viewed as minimizing the eccentricity of the 

vertex in which we will build the police station. Thus, we will build the police 

station on a centre of the graph. If, however, we wish to build a shopping mall, 

our considerations would be different. One consideration could be to be as near as 

possible to as many people as possible. Using a graph to model the new town, this 
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requirement can be viewed in one way as minimizing the total distance of all vertices 

to the vertex in which we will build the mall. In some way, this vertex is a 'centre' 

of the graph, though not exactly in the way as defined above. These examples show 

that questions of centrality with regard to the location of facilities can be studied 

using graphs as models. 

Exercise 12.1. For each of the graphs G shown in Figure 12.6, find 

(i) the eccentricity of each vertex in G; 

(ii) rad( G); 

(iii) diam( G); 
(iv) C(G). 

Exercise 12.2. 

G. 

Exercise 12.3. 

vertex if e( v) 

vertices. 

Figure 12.6 

Show that the result (12.4) holds for any connected multigraph 

A vertex v in a connected multigraph G is called a peripheral 

diam( G). Show that G always contains at least two peripheral 

Exercise 12.4. For each integer n 2': 1, construct a graph G of order n such that 

rad(G) = diam(G). 

Exercise 12.5. For each integer n 2': 3, construct a graph G of order n such that 

diam( G) = 2 rad( G). 

Exercise 12.6. For any two positive integers r and d with r :S d :S 2r, construct 

a graph G such that rad( G) = r and diam( G) = d. 

Exercise 12. 7. Let xy be an edge in a connected multigraph. Show that 

-1 :S e(x)- e(y) :S 1. 

Exercise 12.8. Let G be a connected multigraph with rad( G) = r and diam( G) = 
d. Show that for each integer k with r :S k :S d, there exists a vertex w in G such 

that e(w) = k. 

Exercise 12.9. Let G be a graph of order n 2': 1 such that d(x) 2': n2l for each 

vertex x in G, where d(x) is the degree of x in G. Must G be connected? What can 

be said about diam( G)? 



Exercise 12.10. Let G be a connected graph of order n 2: 3 and let ~(G) denote 

the maximum of the vertex degrees in G, i.e., ~(G)= max{d(x): x E V(G)}. 
(i) If ~(G)= n- 1, find diam(G). 

(ii} If ~ (G) = n - 2, what can be said about diam( G) ? 

(iii} If ~(G)= n- 2 and diam(G) = 2, show that IE(G)I 2: 2(n- 2). 

13. The Sum of Distances in a Graph and the Wiener Index 
At the end of Section 12, we mentioned another kind of 'centre', which was a vertex 

whose sum of distances to all other vertices is a minimum. Consider the graph G of 

Figure 13.1. It is clear that vertex c is the only centre by the definition of having 

the smallest eccentricity (e(c) = 2). Now the sum of the distances between c and all 

the other vertices is 2(1) + 6(2) = 14. However, the sum of the distances between 

vertex d and all the other vertices is 5(1) + 2(2) + 1(3) = 12, which makes d more 

suitable as a 'centre' for other purposes (such as for a shopping mall). 

G: 

e (17) 

f ( 15) 

---~ .... ~-----tl--- g ( 19) 

Figure 13.1 

h(18) 

i (18) 

In general, let G be a connected graph and v E V(G). The transmission of v, 

denoted by O"(v), is the sum of the distances between v and all the other vertices in 

G. That is, 

(13.1) O"(v) = L d(v,x). 
xEV(G) 

As an example, the transmissions of the nine vertices in the graph G of Figure 13.1 

are shown in parentheses. 

Of greater interest to researchers is the notion of the transmission of the graph itself, 

which is defined to be the sum of transmissions of all the vertices in the graph. Thus, 

for a graph G, the transmission of G is the value 

(13.2) O"(G) = L O"(v). 
vEV(G) 
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Observe that 

a( G) L a(v) (by (13.2)) 
vEV(G) 

L L d(v,x) (by (13.1)) 
vEV(G) xEV(G) 

(13.3) L d(v,x), 
v,xEV(G) 

where the last sum is taken over all ordered pairs of vertices v and x in G. Thus, 

the transmission of G is the sum of the distances between all ordered pairs of vertices 

in G. 

The following two theorems give a lower bound (Entringer, Jackson and Snyder [7]) 

and an upper bound (Entringer, Jackson and Snyder [7], Doyle and Graver [6], and 

Lovasz [[12], p.276]) for O"( G). 

Theorem 13.1. If a connected graph G has n vertices and m edges, then 

O"(G) 2: 2n(n- 1)- 2m. 

Equality occurs if and only if diam(G) :S 2. 

Proof. For any v, x E V( G), we have d( v, x) = 1 if and only if vx E E(G). By (13.3), 

O"(G) = 2.: d(v,x) 
v,xEV(G) 

2.: d(v,x)+ 2.: d(v,x) 
v,xEV(G) v,xEV(G) 
vxEE(G) vx~E(G) 

> 2.: 1+ 2.: 2 
v,xEV(G) v,xEV(G) 
vxEE(G) vx~E(G) 

2m + 2 x 2 x ( (;) - m) 

2n(n- 1)- 2m, 

where the equality holds if and only if d(v, x) = 2 for all v, x E V(G) with vx rf:_ E(G), 

i.e., diam(G) :S 2. o 

Theorem 13.2. If G is a connected graph with n vertices, then 

1 
a( G) :S 3n(n- 1)(n + 1). 

Moreover, this bound is achieved if and only if G is a path. 



We omit the proof in this article but shall revisit this theorem when we discuss the 

notion of trees in a future article. 

For more comprehensive information on the theoretical results pertaining to 'dis

tances', the reader may find the book [1] useful. 

Transmission numbers have been investigated by several authors under different 

names. The term 'transmission' is due to Christofides [3] while Harary [8], motivated 

by certain sociometric problems, used the term 'status'. 

In 1947, Harold Wiener [13] introduced the quantity W, eventually named the 

Wiener index, in his paper entitled Structural determination of paraffin boiling 

points. To explain the different boiling points of various saturated paraffins, it 

was reasoned that compounds with a less 'compact' molecular structure would boil 

at higher temperatures since they were more likely to be entangled during mo

tion. Thus, W was conceived as the sum of distances between all pairs of vertices 

in the molecular graph of an alkane, with the aim of providing a measure of the 

compactness of the respective hydrocarbon molecule. (The Wiener index is in

deed the transmission number of a graph!) In Figure 13.2, the structural formula 

of 3, 4-dimethylhexane and its corresponding molecular graph, which is actually a 

representation of only its carbon atoms, are shown. 

H 
I 

H H H-C-H H H 

I I I I I 
H-c--c--c--c--c-H 

I I I I I 
H H H H-C-H H 

I 
H-C-H 

I 
H 

Figure 13.2 

Wiener showed that there is an excellent correlation between W and the boiling 

points. He proposed a formula that closely approximates the boiling point (B) of 

an alkane as 

where o:, {3 and 1 are empirical constants and P, the polarity number, is the number 

of pairs of vertices whose distance is equal to 3. 

Weiner subsequently showed strong correlations between W and other physico

chemical properties of organic compounds, such as molar volumes, refractive indices, 

heats of isomerisation and heats of vaporization of alkanes. 

YOLUIM ~I RO.I, JUJU 200lf 

Mothemoticol Medley 17 



YOI.OIK ll RO.I, JUM 2001t 

18 Nathemolical tv\edley 

More recent work on the Wiener index has demonstrated that it measures the area 

of the surface of the respective molecule and thus reflects its compactness. Physical 

and chemical properties of organic substances which are expected to depend on the 

area of the molecular surface are thus further expected to correlate well with W and 

so it has been reported for heats of formation, vaporization and atomization, density, 

boiling point, critical pressure, refractive index, surface tension and viscosity. Lest 

it be concluded that W correlates with everything, results with melting points have 

not been satisfactory. 

Attempts have been made to use the Wiener index in designing new drugs. Correla

tions have been established between W and cytostatic and antihistaminic activities 

of certain pharmacologically interesting compounds. More recently, the Wiener 

index was employed in the study of the n-octanol/water partition coefficient, an in

dicator of transport characteristics and interaction between receptor and bioactive 

molecule. This coefficient is a physico-chemical parameter of significant importance 

for the forecasting of pharmacological activity of many compounds. 

For a more detailed survey of the Wiener index and its applications in Chemistry, 

the reader is referred to the articles by Diudea and Gutman [4], and Dobrynin, 

Entringer and Gutman [5]. 

Exercise 13.1. Show that the path Pn achieves the bound of Theorem 13.2. 

Exercise 13.2. Find the Wiener index for the graph in Figure 13.2. 

Exercise 13.3. Find the transmission of each vertex of each of the following 

graphs 

X 
Ss Cs 

Figure 13.3 
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