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Introduction. In second author's ninth grade geometry text [1], Stewart's Theorem 

is relegated to pages 721 through 723 in the last chapter which is headed "Enrich

ment Topics." Since there are so many topics that have to be covered in a ninth 

grade geometry class that begins the secondary curriculum leading to Advanced 

Placement Calculus, he has always run out of time well before reaching page 721. 

Consequently, he has never developed or presented the theorem in his geometry 

class. It is a lovely theorem about which he and, perhaps, other geometry teach

ers, need to remind themselves from time to time. It is easy to prove (as opposed 

to discovering on one's own), and Posamentier's Excursions in Advanced Euclidean 

Geometry provides a proof and nice uses of the theorem [2]. 

The theorem was known to mathematicians of the Fourth Century A.D., but the 

theorem's eponym was the Eighteenth Century Scottish mathematician Matthew 

Stewart [1]. Investigations and applications of Stewart's Theorem would provide 

interesting and suitable projects for ninth grade students who wish to do a little 

extra geometry. In the work to follow, we shall state Stewart's Theorem without 

proof, give a simple example of its use, and then apply it to an interesting problem 

which has come to our attention. 

Stewart's Theorem. Let us consider 6ABC with cevian CD as shown in Figure 

1 and denote the lengths of relevant segments in the following manner: 

AB=c, BC=a, AC=b, CD=d, BD=m, and AD=n. 

The claim made by Stewart's Theorem is that 

a2n + b2m = c d2 + cmn. 
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Figure 1 D.ABC with cevian CD. 



The proof is straightforward and can be accomplished with two applications of the 

Pythagorean Theorem [1 ,2]. 

Example. Suppose that in !::.ABC, AB = c = 8, BC = a = 6, AC = b = 7, 

BD = m = 3, and AD= n = 5. Let us find the value of CD= d. 

First Solution. We make use of Stewart's Theorem by writing 62 (5)+72 (3) = 8 d2 + 

8(3)(5) which implies that d2 = 207/8. Thus d = J207 /8 = (3/2)V23f2 ~ 5.08675. 

0 

Second Solution. Perhaps, Stewart's Theorem, elegant as it is, has been relegated 

to the "enrichment" chapter of the geometry text because examples such as this one 

can be solved with trigonometry. In this case, two applications of the law of cosines 

will do quite nicely. We see that in !::.ABC. 

cosB = (a2 + c2
- b2)/(2ac) = (36 + 64- 49)/96 = 17/32 

and that in l::.DBC 

d2 = a2 + m 2 
- 2am cos B = 36 + 9- 36(17 /32) = 207/8. 

Thus d = J207 /8 as previously obtained. 0 

The interesting problem to which we referred is presented below. It was stated and 

solved by Professor Zeljko Hanjs of the University of Zagreb, Croatia, who shared 

his work with the first author. 

Problem. It is given that CB >CAin !::.ABC and that cevian CT bisects LACE. 

Furthermore, cevian CS is given with BS = TA as shown in Figure 2. 
c 

Figure 2. b.ABC with cevians CT and CS. 

Prove that CS2 - CT2 = (CB- CA) 2 . 

Proof. Since Tis between B and A, we may write that BT + TA = EA. Since 

CT bisects LAC B, we may also write that BT jT A = C B j CA. It follows that 
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BA·CB 
BT/(BA- BT) = CB/CA. Therefore, BT = CA + CB and TA = BA- BT = 
BA·CA 
CA+CB. 

We are now in a position to apply Stewart's Theorem to cevian CT in !::.ABC. We 

may write that 

C B 2 · T A + C A2 · BT = BA · CT2 + BA · BT · T A 

which implies that 

CT2 = CB2. TA;ACA2. BT- BT. TA. 

Next, we substitute for BT and T A the expressions in terms of the sides of !::.ABC 
as found above. The substitution followed by a bit of algebra yields 

(1) CT2 = C B . C A - BA2 . C B . C A 
(CA + CB)2 . 

Let us now turn our attention to cevian CS and apply Stewart's Theorem again, 

this time toCSin !::.ABC. We may write that 

CB2 ·SA+ CA2 · BS = BA · CS2 + BA · BS ·SA. 

This equation implies that 

(2) 

We have been given that BS = T A for this problem. Therefore, SA= BT as well, 

and equation (2) becomes 

C S2 = C B2 . BT + C A 2 . T A - T A . BT 
BA . 

Making the same substitutions for BT and T A that led to equation 1 and doing the 

same sort of algebra, we obtain 

C B 3 + C A3 BA 2 
· C B · C A 

CA + CB (CA + CB)2 
or 

(3) C B2 - C B . C A C A 2 - BA 2 . C B . C A 
+ (CA + CB) 2 

Subtracting equation (1) from equation (3), we obtain 

CS2 - CT2 = CB2 - 2GB· CA + CA2 = (CB- CA)2 
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Using Stewart's 

which is the desired result. D 

Conclusions and Another Problem. As suggested above, Stewart's Theorem is 

not "needed" for computation by students who know the law of cosines. However, 

such a nice result as the conclusion of Professor Hanj s's problem would not seem to 

be obtainable in so straightforward a manner by trigonometric means. It is a pity 

that such a lovely theorem is not more widely taught in plane geometry classes in 

secondary schools in America and Singapore. 

We leave for our readers a problem taken from our second reference. We hope 

that they will agree that Stewart's Theorem provides an elegant way to attack the 

problem that follows: 

Problem. Prove that, in a right triangle, the sum of the squares of the distances 

from the vertex of the right angle to the trisection points of the hypotenuse is equal 

to 5/9 of the square of the length of the hypotenuse. 
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