
Let us consider the triangle shown in Figure 1. Its vertices are denoted by A, B, and 

C, and the lengths of sides AB, BC and CA are denoted in the standard manner 

as c, a and b, respectively. A 

Point Q lies on AB and has the property 

that CA+AQ = CB+BQ = (a+b+c)j2. 
Point P lies on BC and has the property 

that AB + BP = CA+ CP =(a+ b+ c)/2. 
Point R lies on C A and has the property that 

AB+AR = BC+CR = (a+b+c)/2. We call 

P, Q and R the "half-way points" in L.ABC 

opposite to A, C and B, respectively. 

Figure 1. 6 ABC with Cevians 

to the half-way points 

Concurrent Cevians. We have drawn cevians AP, BR, and CQ as though they 

are concurrent. Let us prove that in fact they are. 

It should be clear that AR = (a+ b + c)/2- c =(a+ b- c)/2 and CR =(a+ b + 
c)/2- a= (-a+ b + c)/2. Similarly CP = (a+ b + c)/2- b = (a- b + c)/2 and 

BP = (a+b+c)/2-c = (a+b-c)/2. Also BQ = (a+b+c)/2-a = (-a+b+c)/2 
and AQ =(a+ b + c)/2- b =(a- b + c)/2. 

The obvious way to proceed is by means of Ceva's Theorem. However, we shall 

use convex (or barycentric) coordinates to complete our proof since their use makes 

possible several interesting computations. We note in passing that Ceva's Theorem 

itself can be proved with convex coordinates. 

Each point Z of the closed triangular region ABC has uniquely associated with it 

in a one-to-one manner an ordered triple of real numbers (a, (3, r) where a 2: 0, 

(3 2: 0, 1 2: 0, and a+ (3 + 1 = 1. These three numbers, a, (3, and/, are the convex 

coordinates of Z with respect to the vertices A, B, and C in that order. The convex 

coordinates of Z may be interpreted as the distribution of 1 unit of weight, a at 

A, (3 at B, and 1 at C, which defines Z to be the balance point of the otherwise 

weightless triangular region. 

As examples, the convex coordinates of A, B, C, and the centroid of the triangular 

region are (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1/3, 1/3, 1/3), respectively. The convex 

coordinates of the midpoints of AB, BC, and CA are (1/2, 1/2.0), (0, 1/2, 1/2), and 

(1/2, 0, 1/2), respectively. 

Let us place weights a at A, (3 at B, and 1 at C so that cevian CQ will fall on a 

balance line of the region. Since 1 at C is supported by the cevian, we have balance 

if and only if (AQ)(3 = (BQ)a or 

(3(a- b + c)/2 =a( -a+ b + c)/2. (1) 



Similarly, cevian BR will define a balance line if and only if (AR)T = (CR)a or 

I'( a+ b- c)/2 =a( -a+ b + c)/2. (2) 

Cevian AP will define a balance line if and only if (BP)T = (CP)(3 or 

I'( a+ b- c)/2 = (3(a- b + c)/2. (3) 

All three cevians will define balance lines if and only if there exists a triple of 

numbers a, (3 and/' that satisfies equations 1, 2, and 3 simultaneously. If a solution 

exists, the balance point for the weight distribution must be located on each cevian. 

Hence, the three cevians must be concurrent at the balance point. If the numbers 

a, (3 and /' also satisfy the equation a + (3 + /' = 1 with a 2: 0, (3 2: 0, and /' 2: 0, 
the three numbers are the convex coordinates of the balance point. 

Such a solution does exist. It is given by 

( 
(b-c)2 -a2 (a-c)2 -b2 (a-b)2 -c2 ) (4) 

(a, (3, 'Y) = a2 + (b- c)2 - 2a(b +c)' a2 + (b- c)2 - 2a(b +c)' a 2 + (b- c)2 - 2a(b +c) · 

Thus the cevians to the half-way points of the triangle are concurrent and the convex 

coordinates of the point of concurrence are given by equation 4. 

Next, we give two calculations which make use of the convex coordinates which we 

have found. 

Example 1. Isosceles triangle ABC is located in the Cartesian plane. Vertices A, 

B and C have Cartesian coordinates ( -5, 0), (0, 12) and (5, 0), respectively. Let 

us find the Cartesian coordinates of point Z at which the cevians to the half-way 

points of the triangle are concurrent. 

Solution. Applying the distance for

mula, we find that a = 13, b = 10 and 

c = 13. From equation 4, we find that the 

convex coordinates of Z are (a, (3, 'Y) = 

(8/21, 5/21, 8/21). The desired Carte

sian coordinates (x, y) of Z in 6ABC 

are given by convex combinations of the 

Cartesian coordinates of the vertices of 

the triangle. Thus, 

y 
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A(-5,0) C(5,0) 

Figure 2. The Isosceles Triangle 
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8 5 8 20 

y = (O)a + (12)(3 + (0)1 = (0) 
21 

+ (12) 
21 

+ (0) 
21 

= 7· 

We see that (x, y) = (0, 20/7). 



Example 2. Let !'::,ABC be the right triangle in the xy-plane with A, Band Cat 

(0, 0), (0, 16) and (12, 0), respectively. Let Z again represent the point at which the 

cevians to the half-way points are concurrent. Let us find the Cartesian coordinates 

of Z. 

Solution. Since a = 20, b = 12 and c = 16, the convex coordinates of Z as 

given by equation 4 are (6/11, 2/11, 3/11). The Cartesian coordinates of Z are 

X = 0 u1) + 0 ( 121) + 12 u1) = i~ and y = 0 u1) + 16 u1) + 0 u1) = ii. 
Another Three Cevians. We close 

with a second triple of concurrent ce

vians that may with interest be compared 

with the triple of cevians to the half-way 

points. We again consider !'::,ABC with 

sides of length a, b and c as before. We 

draw three circles, one centered at each 

vertex of the triangle so that each circle 

is externally tangent to the other two as 

shown in Figure 3. 
Figure 3. LABC with Circles at the Vertices 

The points at which the circles are tangent in pairs fall on the sides of the triangle. 

Points of tangency P', R', abd Q' are on the sides opposite to A, B, abd C, respec

tively. Let the lengths of the radii of the circles centered at A, B, and C be u, v 

and w respectively. Then 

u 

v + w 

+ w 
u + v 

a, 

b, and 

c. 

We solve equations 5 simultaneously to find that 

u (-a+b+c)/2, 

v (a - b + c)/ 2, and 

w (a+b-c)/2. 

(5) 

(6) 

We have drawn cevians AP', BR' and CQ' to be concurrent. That we have drawn 

the cevians correctly follows immediately from Ceva's Theorem since 

(AR'/R'C)(CP'/P'B)(BQ'jQ'A) = (ujw)(wjv)(vju) = 1. 

It should be clear from Figure 3 that AR' = Q' A = u, BQ' = P' B 

CP' = R'C=w. 

v, and 

It strikes us as most interesting that, in both cases, the cevians to the half-way 

points and the cevians to the points of tangency divide the sides of !'::,ABC into 

segments which have (in pairs) the same lengths. However, the orders of the lengths 



of the segments around the triangle are different for the two sets of cevians. 

We see that for the half-way points AR = BP = ((a+ b- c)/2, CP = AQ 
(a- b + c)/2, and CR = BQ = (-a+ b + c)/2 while for the points of tangency 

CP' = CR' = (a+ b- c)/2, BQ' = BP' = (a- b + c)/2, and AR' = AQ' = 
(-a+b+c)/2. 

We can find the convex coordinates of the point at which the cevians to the points 

of tangency are concurrent by solving the equations. 

wa' U"f
1

, 

uf3' va', and (7) 

a' + (3' + 'Y' 1. 

In equations 7, a', (3' and "(1 are the convex coordinates with respect to A, B and 

C of the point at which the cevians to the points of tangency are concurrent. We 

find that 

( 1 1 ') ( U V W ) a,/3,"( = ' ' . 
u+v+w u+v+w u+v+w 

Recalling the solutions for u, v and w given by equations 6, we can also write 

a' = -a + b + c (3' = a - b + c and 'Y' = a + b + c 
a+b+c' a+b+c' a+b+c 

It seems to us that these convex coordinates have a particularly pleasing form. 

The differences in the computations for the two triples of cevians follow from the 

differing orders of the segment lengths around 6.ABC. That order matters is a most 

important lesson. 

Example 3. Let 6.ABC be the right triangle described in Example 2. Let us 

find the Cartesian coordinates of the point at which the cevians to the points of 

tangency are concurrent. 

Solution. Since a= 20, b = 12 and c = 16, (a',/31
,"(

1
) = (1/6, 1/2, 1/3). Therefore, 

the Cartesian coordinates (x, y) are given by 

x = 0 ( ~) + 0 ( ~) + 12 ( ~) = 4 and y = 0 ( ~) + 16 ( ~) + 0 ( ~) = 8. 
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