A. Prized Problems

Problem 1 (Book voucher up to $150)
Proposed by Albert F.S.Wong, Temasek Polytechnic

For what values of p and ¢ would the zeros of 2 + px? + gz + 3p = 0 be positive
integers?

Problem 2 (Book voucher up to $150)

Let {a,} be a sequence of positive integers satisfying the following property

Zad =2,

din

Prove that n divides a,.

A

B. Instruction

(1) Prizes in the form of book vouchers will be awarded to one or more received
best solutions submitted by secondary school or junior college students in

Singapore for each of these problems.

(2) To qualify, secondary school or junior college students must include their full
name, home address, telephone number, the name of their school and the class
they are in, together with their solutions.

(3) Solutions should be sent to : The Editor, Mathematics Medley, c¢/o Depart-
ment of Mathematics, National University of Singapore, 2 Science Drive 2,
Singaporel17543 ; and should arrive before 30 November 2005.

(4) The Editor’s decision will be final and no correspdndence will be entertained.
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o099 60 Solution to Problem 1 By Zhao Yan - Raffles Junior College

09000600

0900060 Firstly,
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® © © On the other hand,

::: : 11_;=(1—x)(1+m4+m8+---):1—:v+x4—m5+x8—x9+-~.
So,
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n=0 n=0

The left hand side of (x) gives:

fol (1—z)(111::)(1+z ydo = fOl de
it %fol (Wlx + ﬁ’) de
= 1 (e ) o
= 1[n(1 +2) +tan—'z — LIn(1 + 2?)],
- JGmeeg).

The right hand side of (*) gives

i x4n+1_m4n+2 l—i S
—~\4dn+1 4n+2 rS n+1 4n+2/)°

n= =0
Hence,
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;(2n+1)(4n+1) . 21(4n+1 +2)

= tln2+Z-2(1-3)=1l2+% -1

Observe that if & > 0, then LB EE

/oo e~ dx = l :
a
8 P

Hence,

DO

i (n +1/4 n +11/2>

n=1

5 —(n+1/0)z _ —(n+1/2)x
2::1/ ( i e~ (nt )dw

Since the integrand is uniformly bounded, we can interchange the two operations.

1
nzz:l (2n+1)(4n + 1)

I
D=

Hence arriving at

) 1 - 0 4 o -3 of
Z(2n+ D(An+1) 3lo (Ze ) (e7%/4 — e~2/?) da.
n=1 .

n—1
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Applying the transformation, e™ = t* to (1) yields the result
= i 5_46
Lo B=t® ra
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@@ ®®  Solution to Problem 2
0006000
@OO®®® By Kanav Arora - Anderson Junior College
000000
©® ©®® Theset of n integers has to be chosen from the set
o9 €6
®20® 00O {1,2,3(n—1),n,(n+1)(2n — 1)}.
BDeReE
0006060 Now, we can see that actually all the numbers except n form a pair whose sum is
000000
DOBBED equal to 2n.
99® @ 1+ (2n—1) = 8in
0060 o 2+ (2n —2) = o
® & ¢
®00 ¢ 3+ (2n-3) = 2
o900 ©
(n=-1)+Mn+1) = 2n
These are a total of (n — 1) pairs. The presence of even one of these pairs in Set A
will ensure that we can always find elements in it whose sum is divisible by 2n.
Now, the way we choose n integers can be divided into two cases: when n is chosen
and when 7 is not chosen.
Case 1: When n is not chosen.
Now, since there are only (n—1) pairs and we have to choose n numbers from them,
therefore now the Set A will have at least one complete pair whose sum is equal to
2n. Therefore, in this case, we can always find integers whose sum is equal to 2n.
Case 2: When n is chosen in Set A
Now, since one number chosen is n, therefore total of (n — 1) more numbers are left
to be chosen. There are still (n — 1) pairs of numbers left whose sum is equal to
2n. So, at most, the remaining (n — 1) numbers will be chosen such that all the
numbers belong to different pairs and in doing so, all the pairs will be used up. If
7 )
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this is not strictly followed then we will end up with one pair in Set A and hence the

condition will be satisfied. Now, we try to choose numbers such that the condition

is not satisfied and then finally try to show that this actually is not possible.

First, we write all the pairs whose sum adds up to 2n.

1,2n—1
2,2n— 2
3,2n — 3
4,2n —14
n—2,n+2
n—1n+1

Now, as earlier stated, we need to select only one number from each pair. Let this
set of (n — 1) integers be defined as Set B. Since n is already present in Set A,
therefore, the elements of B should be such that they should neither add up to an
even multiple of n (directly satisfying the condition) nor odd multiple of n (adding
n already present in Set A will make it a multiple of 2n).

This case can be further subdivided into two cases: when 1 is chosen and when
(2n — 1) is chosen.

Case 2(a): When 1 is chosen.

If 1 is chosen then from the last pair (n — 1) cannot be chosen (or else they would
add up to n, i.e. is a multiple of n). Hence, the number chosen from the last pair
would be (n+1). Now, these numbers add up to give (n+2). Now, from the second
pair, (2n—2) cannot be chosen (or else (n 4 2) + (2n—2) = 3n). Hence, the number
chosen from that pair would be 2. Now, adding 1 and 2, we get 3. Now, from the
third pair (2n — 3) cannot be chosen (or else they would add up to give a multiple
of n). Hence, the number chosen from that pair should be 3.

Similarly, adding 1 and 3 would give us 4. Hence, from the fourth pair, the number
selected should be 4.

Similarly, from every pair the smaller number will be selected except for the last
pair from which (n + 1) has already been selected. This means from the second last
pair, (n —2) has been selected. But if we add this to 2 which has been selected from

1]
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the second pair, we get n, which is actually a multiple of n. Hence; we see that the

condition cannot be satisfied. But for this, we need to ensure that the numbers 2
and (n — 2) are actually not the same. So, we get the inequality. Therefore, the
condition is true for this case for n > 4. But, coincidentally, at n = 4, 14+2+(n+1) =
1+ 2+ 5 = 8 which actually sums up to a multiple of 2n or 8. Hence, the initial
proposition is true in this case for n > 4.

Case 2(b):

The proof for this case is quite similar to the previous case. If (2n — 1) is chosen

When (2n — 1) is chosen from the first pair.

from the first pair, then from the last pair (n — 1) is the only valid option. Adding
both of them, we get (2n — 2). Hence, from the second pair, (2n — 2) is chosen.
Like this, we continue as in the previous case and we find that from every pair
except the last one, the larger of the two numbers is chosen. Then, if we add up
(2n — 2) from the second pair and (n + 2) from the second last pair, we get 3n
that is a multiple of n. Hence the condition cannot be satisfied. But in this case
too, we need to ensure that the above-mentioned numbers are actually different.
Therefore, we get the inequality. But, in this case too, coincidentally for n = 4,
2n—1)+(n—-1)+(2n—2) =7+ 3+ 6 = 16 (a multiple of n i.e. 4). Therefore, in
this case too, the initial proposition is true for n > 4. Hence, the proposition is true
for case 2: When n is chosen in Set A. Therefore, after combining both the cases,
we see that we can always find elements from Set A such that their sum is divisible
by 2n.
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