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Kings in Tournaments 
by 
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ABSTRACT. Landau, a mathematical biologist, showed in 1953 that any tournament T always 

contains a king. A king, however, may not exist. in the. resulting digraph T- {e} obtained by 

deleting an arc e from T. In this note, we characterize those arcs e in T fiUCh that T- {e} 

contains a king. 

1. Tournaments 

A tournament is a non-empty finite set of vertices in which every two vertices are joined by 

one and only one arrow (such an arrow is also called an arc or a directed edge). A tournament 

with five vertices is shown in Figure 1. 

a 

Such a mathematical model is called a tournament since it can be used to show the possible 

outcomes of a round-robin tournament. In a round-robin tournament, there is a set of players 

(or teams) where any two players (or teams) engage in a game that cannot end in a tie, and 

every player (or team) must play each other once and exactly once. 

2. Terminology 

LetT be a tournament and x, y be two vertices in T. If there is an arrow from x toy, we say 

that x dominates y or y is dominated by x (symbolically, x ---+ y). The number of vertices 

dominated by xis the out-degree of x, and is denoted by d+(x). The number of vertices that 

dominate x is the in-degree of x, denoted by d-(x). The out-degree of the vertex x is also 

known as the score of x. The set of vertices dominated by xis the out-set of x, O(x); and the 

remaining set of vertices that dominate xis the in-set of x, I(x). 
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Let x be a vertex and A be any set of vertices not containing x in T. We write A ----+ x to 

indicate that every vertex in A dominates x; and x ----+ A to mean that x dominates all the 

vertices in A. 

Let B and C be any two disjoint sets of vertices in T. We write B---+c to indicate that every 

vertex in C is dominated by some vertex in B. 

For any 2 vertices x, yin T, the distance from x toy, denoted by d(x, y), is the minimum 

number of arrows one has to follow in order to travel from x to y. Clearly, d(x , x) = 0 for any 

vertex x in T; d(x, y) = 1 if x dominates y; d(x, y) 2': 2 if x does not dominate y. Note that 

d(x, y) may not be equal to d(y, x), and we define d(x, y) = oo if y is not reachable from x. 

3. Kings in Tournaments 

Let T be a tournament with n 2': 2 vertices. A vertex x in T is called the emperor if 

d(x, y) = 1 for any other vertex yin T; that is, x dominates all other vertices in T. Clearly, x 

is the emperor if and only if d+(x) = n- 1. 

A vertex x in T is called a king if d(x, y) ::::; 2 for any other vertex y in T; that is, for any 

other vertex y in T, either x----+ y or x----+ z----+ y for some z in T. By definition, the emperor is 

a king, but not conversely. 

Studying dominance relations in certain animal societies, the mathematical biologist Landau 

proved in [3] the following result: 

Theorem 1. In a tournament T, any vertex with the maximum score (out-degree) is always 

a king. D 

Moon, a Canadian mathematician, proved in [4] the following: 

Theorem 2. In a tournament T, any non-emperor vertex v (i.e. v is dominated by some 

other vertex in T) is always dominated by a king. D 

As a direct consequence of Theorem 2, we have: 

Corollary 3. No tournament contains exactly two kings. D 

Thus, any tournament either contains exactly one king (the emperor) or at least three kings. 
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4. The Main Result 

Let T be a tournament and e an arc in T. Suppose e is deleted from T. Does the resulting 

structure now contain a king (that is, a vertex from which one can reach others within 2 steps 

in the resulting structure)? We shall settle this problem in what follows. 

Let A be a set of vertices in T. Note that the resulting structure obtained from T by deleting 

the vertices in A together with those arcs incident with them remains as a tournament. We 

denote it by T - A. However, the resulting structure obtained from T by deleting some arcs 

only is not a tournament; for convenience, we call it a digraph. A king of a digraph is similarly 

defined as it is defined for a tournament. Also, an arc from vertex a to vertex b is denoted by 

(a, b). 

The objective of this note is to establish the following result. 

Theorem 4. Let T be a tournament with at least 3 vertices and e = (a, b) an arc in T. Let 

D( = T- { e}) be the digraph obtained by deleting e from T. Then D contains at least one king 

if and only if d-(a) + d-(b) 2: 1 in D. 

Proof: [Necessity] 

Suppose on the contrary that in D, d-(a)+d-(b) < 1, i.e. d-(a)+d-(b) = 0. Then d-(a) = 0 

and d-(b) = 0. In this case, no vertex can reach a and binD, and thus D contains no kings. 

[Sufficiency] 

(1) d+(a) = 0 and d+(b) = 0 in D. 

Let z be any king of T - {a, b} (it exists by Theorem 2). Clearly, z --+ a and z --+ b, 

which imply that z is a king of D. 

(2) d+(a) = 0 and d+(b) > 0 (or vice versa) in D. 

Let z be a king ofT- {a}. 

(a) If z = b, then d(b, a) = 2, and so z( =b) is a king of D. 

(b) If z =/= b, then z --+ a, and hence z is also a king of D. 

(3) d+(a) > 0 and d+(b) > 0 in D. 

(a) Either d- (a) or d- (b) is zero (but not both since d- (a) +d- (b) 2: 1), say d- (a) = 0. 

Since a--+ I(b) --+ b, d(a, b) = 2; and hence a is a king of D. 

(b) d-(a) > 0 and d-(b) > 0 in D. 
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• If there is a king z of T - {a, b} which dominates both a and b, then z is a king of 

D. 

• Suppose there is a king z ofT- {a, b} which dominates either a or b, but not both, 

say, z -----+ a and b -----+ z. Assume z is not a king of D. Then d(z , b) > 2, and so 

I(b)-----+ z and O(z) ~ O(b), excluding a. 

Let y be a king of I(b). Then y is a king of D since y-----+ b-----+ O(b) andy-----+ z-----+ a 

(see Figure 2). 

Figure 2 

• Suppose all the kings z ofT - {a, b} are dominated by both a and b. Assume that 

there is no king of D. Then the set of vertices S = I( a) n I(b) must dominate all 

such z which are not inS; otherwise, z can reach a and b through S within 2 steps, 

and z would be a king of D. 

If set S ol 0 , then any king of S is a king of D since all vertices not in S are 

dominated by a or b. 

Thus, S = 0 (i.e. no vertex dominates both a and b), and z cannot reach a or b 

or both (say, a) in two steps. Therefore b -----+ I(a), a -----+ I(b) and a -----+ O(z), i.e. 

O(z) ~ O(a), I(a) ~ I(z). Since d-(b) 2: 1, a -----+ I(b) -----+ b. Since z is a king of 

T- {a, b}, z-----+ O(zt--> I(z). Thus a-----+ O(zt--> I( a) and a-----+ z (see Figure 3). This 

shows that a is king of D, a contradiction. 
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Figure 3 

The proof of Theorem 4 is thus complete. D 

Remark. Let e and f be two arcs in a tournament T. What are the conditions that should 

be imposed on e and f so that the digraph obtained by deleting them from T contains a king? 

We shall study this more complicated problem in another (forthcoming) note. 
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