Kings in Tournaments (2)

by
Yu Yibo

Abstract

In [5], we have characterized those arcs e in a tournament T, such that the digraph $T - \{e\}$ obtained by deleting e from T contains a king. In this note, we characterize those pairs of arcs $\{e_1, e_2\}$, where $e_1 = (a, b)$ and $e_2 = (b, c)$ such that the digraph $T - \{e_1, e_2\}$ obtained by deleting these two arcs from T contains a king.

1. Tournaments

A tournament is a non-empty finite set of vertices in which every two vertices are joined by one and only one arrow (such an arrow is also called an arc or a directed edge).

Let T be a tournament and x, y be two vertices in T. If there is an arrow from x to y, we say that x dominates y or y is dominated by x (symbolically, $x \rightarrow y$). An arc from x to y is denoted by (x, y). The number of vertices dominated by x is the out-degree of x, and is denoted by $d^+(x)$. The number of vertices that dominate x is the in-degree of x, denoted by $d^-(x)$. The set of vertices dominated by x is the out-set of x, $O(x)$; and the remaining set of vertices that dominate x is the in-set of x, $I(x)$.

Let x be a vertex and A be any set of vertices not containing x in T. We write $A \rightarrow x$ to indicate that every vertex in A dominates x; and $x \rightarrow A$ to indicate that x dominates all the vertices in A. We write $A \Rightarrow x$ to indicate that at least one vertex in A dominates x; and $x \Rightarrow A$ to indicate that x dominates at least one vertex in A.

For any two vertices x, y in T, the distance from x to y, denoted by $d(x, y)$, is the minimum number of arrows one has to follow in order to travel from x to y. Clearly, $d(x, y) = 1$ if x dominates y; $d(x, y) \geq 2$ if x does not dominate y. Also, we write $d(x, y) = \infty$ if y is not reachable from x.

2. Kings in Tournaments

Let T be a tournament with $n \geq 2$ vertices. A vertex x in T is called the emperor if $d(x, y) = 1$ for any other vertex y in T; a vertex x in T is called a king if $d(x, y) \leq 2$ for any other vertex y in T.

Studying dominance relations in certain animal societies, the mathematical biologist Landau proved in [3] the following result:
Theorem 1. In a tournament T, any vertex with the maximum score (out-degree) is always a king.

Moon, a Canadian mathematician, proved in [4] the following:

Theorem 2. In a tournament T, any non-emperor vertex v (i.e. v is dominated by some other vertex in T) is always dominated by a king.

As a direct consequence of Theorem 2, we have:

Corollary 3. No tournament contains exactly two kings.

Thus, any tournament either contains exactly one king (the emperor) or at least three kings.

Let D be the resulting structure obtained from a tournament by deleting some arcs. A vertex x in D is called a king if $d(x,y) \leq 2$ for any other vertex y in D. In [5], we have proved the following result:

Theorem 4. Let T be a tournament with at least three vertices and $e = (a,b)$ an arc in T. Let $D = T - \{e\}$. Then D contains at least one king if and only if $d^-(a) + d^-(b) \geq 1$ in D.

3. The Main Result

Now let T be a tournament and e_1, e_2 be two arcs in T. Suppose e_1 and e_2 are deleted from T. Does the resulting structure still contain a king?

The objective of this note is to establish the following result.

Theorem 5. Let T be a tournament with at least three vertices and $e_1 = (a,b), e_2 = (b,c)$ two arcs in T. Let $D = T - \{e_1, e_2\}$. Then D contains at least one king if and only if $d^-(a) + d^-(b) \geq 1$ and $d^-(b) + d^-(c) \geq 1$ in D, not counting (a,c) (i.e., $d^-(b) \geq 1$ OR $d^-(b) = 0, d^-(a) \geq 1$, and $d^-(c) \geq 1$ not counting (a,c).)

Note: The dotted lines show that the arcs (a,b) and (b,c) are deleted. L is the set of vertices excluding a, b and c in D. The dotted arrows indicate that the dominance relations are arbitrary and to be discussed.
Proof: [Necessity] Suppose on the contrary that in D, $d^-(a)+d^-(b) < 1$, i.e. $d^-(a)+d^-(b) = 0$, not counting (a,c). Then $d^-(a) = 0$ and $d^-(b) = 0$. In this case, $d(x,b) = \infty$ for every x in D and $d(b,a) \geq 3$. Thus D contains no kings. Similarly, if $d^-(b) + d^-(c) < 1$, then D contains no kings either.

[Sufficiency] Case (1) $d^-(b) \geq 1$ in D.

Let x be any vertex that dominates b, i.e. $x \rightarrow b$. If x is the emperor of $B(= D - \{b\})$, then x is the only king of D.

If x is not the emperor of B, then x is dominated by a king of B, by Theorem 2. Let this king be z. Clearly $d(z,b) = 2$, and thus z is a king of D (see Figure 2).

Case(2) $d^-(b) = 0$, $d^-(a) \geq 1$ and $d^-(c) \geq 1$ in D, not counting (a,c).

Then $b \rightarrow L$, and $d(x,b) = \infty$ for any x in D. Clearly, b is the only king of D since $b \rightarrow L \rightarrow a$ and $b \rightarrow L \rightarrow c$.

The proof of Theorem 5 is thus complete. \(\square\)

Now consider a more general problem. Let T be a tournament with at least four vertices and $e_1 = (a,b), e_2 = (c,d)$, where b and c may not be the same, be two arcs in T. Let $D = T - \{e_1, e_2\}$. Are similar conditions (i.e. $d^-(a)+d^-(b) \geq 1$ and $d^-(c)+d^-(d) \geq 1$ in D) sufficient to ensure the existence of a king of D? We can easily find one counter example: Suppose that in D, $d^-(a) = d^-(b) = d^-(c) = d^-(d) = 1$, and $a \rightarrow L, b \rightarrow L, c \rightarrow L, d \rightarrow L$ (see Figure 3).
In this case, \(D \) does not contain a king.

Thus, what additional conditions should be imposed so that \(D = T - \{e_1, e_2\} \) always contains a king? This problem remains open.

4. Acknowledgements

I would like to thank Professor Koh Khee Meng from the Department of Mathematics, National University of Singapore for his guidance throughout the entire course of Maths Research Programme 2005/06, which is organized by the Department of Mathematics, Hwa Chong Institution (College Section). I would also like to acknowledge Mr Andrew Yap from the Department of Mathematics, Hwa Chong Institution (College Section) for his continuous supervision and support during the programme.

References

