
29 System of Distinct Representatives 

In Section 27 of our previous article [5], we discussed Lhe following celebrated theorem, 

namely, Hall's Theorem on matchings in bipartiLe graphs, and its applications. 

Theorem 27.1 Let G be a bipartite graph with bipartition (X, Y). Then G con

tains a complete matching from X toY if and only if IAI ::::; IN(A)I holds in G for every 

subset A of X. 

In this section, we shall introduce the notion of system of distinct representatives for 

a family of finite sets, and prove a classic result in the next section about the existence 

of such a family by applying Theorem 27.1. 

We begin with the following example. 

Example 29.1 In the mathematics department of a university, there are five staff 

committees with their executives (excl-uding the Head of Department) elected as shown 

below: 
Colloquium (C) 
Library (L) 
Research (R) 
Sports (S) 
Teaching (T) 

{a,b}, 
{b,c,d}, 
{a,b}, 
{d, e}, 
{b, e }. 
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The Head would like to call a meeting where each committee is represented by one e:reculive 

and different committees must be represented by distinct representatives. Can this be done? 

By trial and error, it is not difficult to see that it can be done. Indeed, one possible 

solution is shown below (where '-' indicates 'representing): 

a - C, c- L, b - R, d- 5 and e - T. 

Note that C and R have the same set of exewtives. 

The above example provides an instance for the following important notion in Com

binatorics. 

Let U be a non-empty set, and S1, S2 , · · ·, .'im be non-empty finite sub:->ets 
(but not necessarily distinct) of U. A system of distinct representa
tives (SDR) for the family (81, 82 , · · ·, Sm) is a sequence of m dements 
(a1 , a2 • ···,am) such that ai E Si for each 'i 1. 2. · · ·, m, and ai / a1 
whenever i f j. 

Thus, in Example 29.1, we see that the sequence (a, c, b, d, e) is an SDR for the family 

(C, L, R, 5, T). Note that it is allowable that 5i 5i for some distinct i and j; for 

instance, we have C = {a, b} = R in Example 29.1. 

Example 29.2 Let U be the set of natural numbers. Consider the family of subsets of 

U in each of the following cases: 

(i) 5 1 = {1,2} , 52 = {2,3} , 53 = {3,4},54 = {4,5} and 5s - {1,5}; 

(ii) 5 1 = {1, 2}, 52 = {2, 3}, 5 3 = {3, 4, 5}, 54 --= {1, 3} and 5s = {1, 2, 3}. 

Does the family (51 , 52,···, 5 5 ) have an SDR? 

(i) The family (51 , 52 ,···, 55) has an SDR, for instance, (1, 2, 3, 4, 5). 

(ii) The family (51 , 52,···, 55 ) does not have any SDR. Why? One way to argue is as 

follows: 0 bserve that 

As there are more sets (4) than members (3 only), it is clear that no SDR for the 

family could exist. 

Mathema~cal Medley 0 Volume 34 No. 1 May 2008 I 03 



Graphs and Their Applications (1 0] 

In general, given a family of m sets (S1 , S2 , · · ·, Sm), if there exist k of them, where 

1 ~ k ~ m, whose union only has less thank members, then it is obvious that the family 

does not have any SDR. That is, if there exists some I r;;;; {1 , 2, · · ·, m}, I non-empty, such 

that 

iE/ 

then the family does not have any SDR. In other words, if (S1 , S2 , · · · , Sm) has an SDR, 

then 

usi ~III, 
iE/ 

for any subset I of {1, 2, · · ·, m}. 

Is the converse true? That is, if I U Sil ~ II I for any subset I of {1, 2, · · · , m}, is it 
iE/ 

true that the family (S1 , S2 , · · · , Sm) would have an SDR? 

30 Hall's Theorem on SDR 

The answer to the above question is in the affirmative, and this positive answer, as shown 

below, was given by Hall [:3]. 

Theorem 30.1 Let U be a non-empty set, and let (S1 , S2 , · · · , Sm) be a family of non

empty finite subsets of U, where m ~ 1. Then the family (S1, S2, · · · , Sm) has an SDR if 

and only if 

I U sil ~III, 
iEI 

foranysubseti of{1 2,···,m}. 

Exercise 30.1 Applying Theorem 30.1, determine, in each of the following cases, if 

the family of sets of integers has an SDR: 

(i) S1 = {1}, S2 = {1, 2}, S3 = {1, 2, 3}, S4 = {1, 2, :3, 4} and Ss = {1, 2, 3,.4, 5}; 

(ii) S1 = {1,2},S2 = {2,:3},S3 = {3,4},S4 = {4,1} and S5 = {2,4}. 

The necessity of Theorem 30.1, as pointed out earlier, is trivial. We shall now apply 

Hall's matching Theorem (Theorem 27.1) to prove the sufficiency of Theorem 30.1. 
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Proof of the sufficiency of Theorem 30.1. 

Thus, assume that (S1 , S2, · · · , S..,J is a given family of non-empty finite subsets of U, 

where m ::::: 1, satisfying the condition that 

lUSil::::: IIJ, 
iEl 

for any subset I of {1, 2, · · ·, m}. We shall show that the family (S1 , S2, · · ·, Sm) has an 

SDR. 

To begin with, we form a bipartite graph G with bipartition (X, Y), where 

X = {S\, S2, · · · ,Sm} andY= U, 

such that Si in X and y in Y are adjacent in G when and only when y is an element in Si. 

(For instance, the bipartite graph G with bipartition (X, Y) corresponding to Example 

29.1 is shown in Figure 30.1. Note that Y is the set of staff members in the department.) 

c L R s T 

X 

... • y 
a b c d e 

Figure 30.1 

Next, we shall show that the inequality JAJ ::::; JN(A)J holds in G for every subset A of 

X. Thus, let A be a subset of X = {S1 , S2 , · · ·, Sm}· We may write A = {SiJi E I} for 

some subset I of {1, 2, · · ·, m}. Note that JAJ = JIJ. 
We may ask: what is N(A) in this case? Well, by our definition of G, N(A) consists 

of all elements of Si, where i is in I; that is, 

N(A) = usi· 
iEJ 
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Since the family (Sl, s2, 0 0 0

) Sm) satisfies the condition that I uiEJ Sil ~ III, for any 

subset I of {1, 2, · · · , m }, we then have 

IN(A)I = I u Sil ~ III= I AI; 
iEJ 

that is, IAI ~ IN(A)I holds in G for every subset A of X, as required. 

Accordingly, by Theorem 27.1, G possesses a complete matching from X toY. Write 

this matching as 

Sm- Ym· 

It is now clear that the sequence (y1 , y2 , · · · , Ym) is an SD R for the family ( S 1 , S2 , · · · , Sm). 

(For the bipartite graph G shown in Figure 30.1, a complete matching from X toY exists, 

and is shown in Figure 30.2, which in turn produces an SDR, namely, (b, c, a, d, e) for the 

family (C, L R, S, T).) D 

c L R s T 

X 

• y 
a b c d e 

Figure 30.2 

Exercise 30.2 Find the number of SDR 's for each of the following families, where n 

is a positive integer: 

(i) {1}, {1, 2}, {1, 2, 3}, ... , {1, 2, 3, ... , n}; 

(ii) {1, 2}, {2, 3}, {3, 4}, · · · , {n- 1, n}, {n, 1}; 

0i~ {1,2},{1,3},{1,4},···,{1,n}; 

(iv) {1, n + 1}, {2, n + 2}, · · ·, {n, 2n}. 
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31 Application- Score Sequences of Tournaments 

Five tennis players B, D, F, Nand Rare invited to take part in a 5-man round-robin 

tou-rnament, where any two of them engage in one and only one match that cannot end 

in a tie. The situation is modeled as the complete graph of order 5 of Figure 31.1, where 

the vertices represent the players and an edge joining 2 vertkes denotes the game played 

by the 2 respective players. 

B 

F 

N R 

Figure 31.1 

Figure 31.1 shows the outcome of the tournament. The results of the ( ~ ) (= 

10) games are indicated by arrows (adding directions to the edges), where, for instance, 

'F --+ N' indicates that 'F defeats N'. 

B 

N R 

Figure 31.2 

Mathematically, we have: 

A tournament is a non-empty firilte set of vertices in which every 2 ver
tices are joined by one and only one arrow. 
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LetT be a tournament, and x, y be vertices in T. If the arrow joining x andy is from 

x t o yin T, we say that 'x defeats y' or 'x dominates y' . The score of x, denoted by 

s(x), is defined as the number of vertices in T dominated by x. Thus, in the tournament 

of Figure 31.2, we have: 

s(B) = 1, s(D) = 1, s(F) = 4, s(N) = 3, and s(R) = 1. 

Exercise 31.1 Suppose that T is a tournament with n ;:::: 2 vertices. Show that: 

(i) 0 :::; s(x) :::; n- 1, for each vertex x in T; 

(ii) 2::: s(x) = ( ~ ) ; 
xET 

(iii) for any k vertices x 1 , x2 , · · ·, Xk in T, 1 :::; k:::; n, i~ s(xi) 2: ( ~ ) . 

Figure 31.3 shows a tournament with 6 vertices and their respective scores. 

4 2 

3 

4 

Figure 31.3 

We may name the vertices as v1 , v2 , · · ·, v6 so that s(tJI) :::; s(v2 ) :::; s(v3 ) < s(v4 ) < 
s(v5 ) :::; s(v6 ). One such naming is shown in Figure 31.4. 

4 2 

3 

4 

Figure 31.4 

08 I Mathematical Medley 0 Volume 34 No. 1 May 2008 



In general, letT be a tournament with n 2: 2 vertices v1 , v2 , · · ·, Vn such that s(v1 ) :::; 

s(v2 ) <:::; · · · <:::; s(vn)· We call the sequence (s(v1), s(v2), · · · , s(vn)) the score sequence of 

T. Thus, (1, 1, 2, 3, 4, 4) is the score sequence of the tournament of Figure 31.3. 

One related basic problem is the following: 

Given a sequence of n inLegers (s 1 , s2 , · · ·, sn), where 0 :::; s1 :::; s2 ::; · · · :::; 

Sn ::; n - 1, find necessary and sufficient conditions for the s.i 's so that 
(s1 , s2 , · · ·, sn) is the Rcore sequence of some tom·nament with n vertices. 

By the results in Exercise 31.1, the equality (ii) and the inequality (iii) are two neces

sary conditions. Indeed, Landau [6] showed that they together are also sufficient. 

Theorem 31.1 (Landau) Given a sequence of n 2: 1 integers 0 :::; s 1 :::; s2 :::; · · · < 
Sn <:::; n- 1, the sequence (s1 , s2 , · · ·, sn) is the score sequence of some tournament with n 

vertices if and only if the following two conditions hold: 

(i) for any k with 1 <:::; k :::; n, ~ Si 2:. ( ~ ) ; and 

(ii) ~ Si = ( ~ ) · 

Landau's Theorem is so 'great' that many researchers have found it worthwhile to find 

fresh proofs for it (its sufficiency). Until now, the theorem has received at least 10 different 

proofs (see, for instance, Reid [7]). In what follows, we shall introduce by example the 

idea of an elegant proof, due to Bang and Sharp [1], which makes use of Hall's Theorem 

on SDR. 

Thus, suppose we are given a sequence of n integers (s 1 , s2 , · · ·, sn) with 0:::; s1 :::; s2 :::; 

· · · :::; Sn :::; n - 1 satisfying 

(i) for any k with 1 :::; k:::; n, ~ Si 2: ( ~ ) and 

.. n (T/,) (u) I: s.i = ') . 
i = l ~ 

Take, for example, the sequence (s1 , s2 , · · ·, s5) = (1, 2, 2, 2, 3) with n = 5 that satisfies 

(i) and (ii). The objective here is to introduce a general method which guarantees the 

existence of a tournament with 5 vertices that has (1, 2, 2, 2, 3) as its score sequence. 
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Step 1. For i = 1, 2, · · ·, n, let Ai be an arbitrary set with I Ail = si, where the Ai's are 

pairwise disjoint. For our instance, let At = {a},A2 = {b,c},A3 = {d,e},A4 = 

{j,g} and As= {p,q,r}. 

Step 2. Form AU Aj , for all 1 :::; i < j :::; n (there are ( ~ ) such unions). In our case, 

we have: 

St = A1 UA2 = {a,b,c}, 
S3 = At u A4 = {a,j,g}, 
Ss = A2UA3 = {b,c,d,e}, 
S1 = A2 u As = {b,c,p,q,r}, 
S9 = A3 UAs = {d,e,p,q,r}, 

S2 = A1 U A3 = {a, d, e}, 
S4 = A1 U As= {a,p,q,r}, 
S6 = A2 u A4 = {b, c, j, g}, 
Ss = A3 u A4 = {d,e,j,g}, 
Sw = A4 U As = {j,g,p ,q,r}. 

Step 3. Given that the sequence (s1 , s2 , · · ·, sn) satisfies the conditions (i) and (ii), Bang 

and Sharp showed that the family (St, S2 , · · ·, Sm), where m = ( ~ ) , satisfies the 

inequality: 

I u Sil 2: III, 
iEJ 

for any subset I of {1, 2, · · ·, m}. Thus, by Hall's Theorem on SDR, the family 

(St , S2 , · · ·, Sm) has an SDR. In our case, we have, for instance, 

Step 4. Construct a tournament with n vertices A1 , A2 , ···,An as follows: given 1 ::::; i, j ::::; n, 

draw an arrow from Ai to Aj when and only when the representative of Ai U Aj in 

the SDR obtained in Step 3 is from A. Thus, for our instance, the tournament with 

5 vertices is shown in Figure 31.5. 

Figure 31.5 
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Bang and Sharp showed that this tournament has its score sequence equal to the 

gjven sequence (s1, s2, · · ·, sn)· D 

Exercise 31.2 Apply Landau's Theorem to determine whether each of the following 

sequences is the score sequence of some tournament. If your answer is 'yes', then apply 

Bang and Sharp's method to construct such a tournament. 

{i) (1,1,2 , 3,3); {ii) (1,1,1 , 2,5,5). 

Further Remarks 

In Exercise 30.2, the reader is asked to find the number of SDR's for some families 

of subsets. In general, the number of SDR's of a family of n subsets R1, R2 , · · ·, Rn of 

{1, 2, · · ·, n} can be found directly from the permanent of the square matrix A = (aiJ), 

where the rows represent the subsets and aiJ - 1 if j E Ri, otherwise aij = 0. The 

permanent of A , per(A), is given by 

where CJ is a permutation of (1 , 2, · · ·, n) and the summation is taken over all n! permu

tations. The study and calculation of permanents itself is an important topic in research 

(see for example, Ryser [8] or Jerrum, Sinclair and Vigoda [4]). 

Optimum transmission of data across a computer network is very important in today's 

highly-wired world. Interestingly, a generalisation of a system of distinct representatives 

has been proposed by Gao, Novick and Qiu [2] to reduce by half the delay time in the 

transmission of data across a computer network modeled on ann-hypercube. They suggest 

the use of disjoint orderings. A permutation of the elements of a finite set is called an 

ordering. Suppose X and Y are two sets ordered as 0 1 = (x1 , x2 , · · ·, xk) and 0 2 = 

(y1, Y2, · · ·, Yz), where k = lXI and l = IYI. 01 and 02 are said to be disjoint if for every 

1:::; t:::; min(k, l), {x1,x2 , · · · ,xt} #- {y1 , y2 , · · ·, yt} as sets, unless t = k = l. A collection 

of finite sets is said to have a disjoint ordering if each set has an ordering such that all 

the orderings are pairwise disjoint. The concept of a disjoint ordering is a generalization 

of a system of distinct representatives. In the first place, if all singletons in a collection 

are distinct, the first elements of each ordering in a disjoint ordering will form a system 

of distinct representatives. Secondly and surprisingly, Hall's marriage condition is also a 

necessary and sufficient condition for the existence of a disjoint ordering. 
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