Domination in Digraphs

Koh Khee-Meng
matkohk@nus.edu.sg
Objectives

- Present some fundamental results on “dominating sets”
- Learn how to generalize or extend existing results
- Cultivate the Habit of Problem-Posing — the first step towards doing research
Digraph (Directed Graph)

Digraph: \(D = (V, A) \)

- \(V = \text{vertex set of } D \) = \{u, v, w, x, y, z\}
- \(A = \text{arc set of } D \) = \{xu, xv, uw, wu, \ldots, yz\}
• Domination
 \(u \) dominates \(x \)

• Degrees
 \(od(v) = \text{outdegree of } v = 3 \)
 \(id(v) = \text{indegree of } v = 2 \)

• Distance
 \(d(a, z) = \text{distance from } a \text{ to } z \)
 \(= \text{the min. no. of arcs traversed from } a \text{ to } z \)
 \(= 5 \)

Note \(d(z, a) = 3 \)
Dominating Vertices (Kings)

A vertex w in D is an r-king if $d(w, v) \leq r$ for all v in V.

$D_1:$

$D_2:$
Landau (1909-1966)
- Dominance Relations in Animal Societies
Tournament

a digraph in which every two vertices are joined by \textit{exactly one} arc.
$k(r, D)$

$= \# \text{ of } r\text{-kings in } D$

Landau (1953)

In any tournament T, any vertex with \textit{highest} outdegree (\textit{score}) is a \textit{2-king}. Thus, $k(2, T) \geq 1$.
Proof of Landau’s Observation

\[od(v) > od(w) \]

contradiction
Questions

- If \(w \) is a 2-\textit{king}, must \(w \) have the \textit{highest score}?
- Are there tournaments \(T \) s.t. \(k(2, T) = 1 \)?
- ♠ A \textit{source} is a vertex with zero indegree.

Every \(T \) with a \textit{source} contains a \textit{unique} 2-\textit{king}.
• Is the *converse* of the above true?
• Under what conditions for T that $k(2, T) \geq 2$?
• Are there tournaments T s.t. $k(2, T) = 2$?
• What is the *best lower bound* for $k(2, T)$ if T contains no source?
Moon’s Observation (1962)

Let T be a tournament with no sources. Then every 2-king is dominated by a 2-king in T. In particular, $k(2, T) \geq 3$. (No tournament can have exactly two 2-kings.)
Proof of Moon’s Observation

\[\text{Proof of Moon’s Observation} \]

\[\begin{array}{c}
\text{Proof of Moon’s Observation}
\end{array} \]
Tournament T \[k(2, T) \geq 1 \]

Digraph D

deleting arcs from T

\[k(r, D) \geq 1 \quad r = ? \]
Multipartite Tournaments

3-partite tournament: \(T(3,2,2) \)

\[\text{No sources}\]
Let D be a *multipartite tournament* with at most one source. Then

$$k(4, D) \geq 1.$$
Let D be an n-partite tournament with no source. Then

$$k(4, D) \geq \begin{cases} 4 & n = 2 \\ 3 & n \geq 3 \end{cases}$$
Thus, 4-kings are of particular interest in multipartite tournaments. In a number of papers, several authors investigate the minimum number of 4-kings in multipartite tournaments without sources. In our view, the above theorem is the most interesting result in this direction. [p.76]
Landau: T tournament

$k(2, T) \geq 1$.

Any ‘team’ version of Landau’s result for general D?
$S \subseteq V$ is an **independent** set if no two vertices in S are joined by an arc in D.

K is a **r-dominating set** of D

(i) K is **independent** &
(ii) every vertex in $V \setminus K$ can be reached from *a vertex* in K *within* r *steps*.

2-dominating set
Dicycles:

1-dominating set

No 1-dominating set

2-dominating set

Does *any* D always contain a 2-*ds*?
The **Chvátal-Lovász Theorem** (1974)

Every digraph contains a **2-dominating set**.

Chvátal (1946 –)
Canada Research Chair in
Combinatorial Optimization
László Lovász (09/03/1948 –)
IMU President (2007–2010)
IMO-Gold(1964, 65, 66)
Wolf Prize(1999)
Gödel Prize(2001)
Kyoto Prize(2010)

虎父无犬子

Miklos Lovasz
IMO-Silver(2007)
& Gold(2008)
The **Jacob-Meyniel Theorem** (1996)

Every digraph which contains *no* 1-dominating set contains *at least three* 2-dominating sets.
Landau: \(k(2, T) \geq 1 \)

Moon: No source, \(k(2, T) \geq 3 \)

Petrovic-Thomassen: \(k(4, M) \geq 1 \)

Koh-Tan: No source,
\[k(4, M) \geq \{3, 4\} \]

Chvátal-Lovász: \(\#(2-ds, D) \geq 1 \)

Jacob-Meyniel: No 1-ds,
\[\#(2-ds, D) \geq 3 \]
Research Process

Observations → Problems

proposing

Problems → Results

asking

Results → Problems

solving
Art of Problem Posing

Cantor founded set theory and introduced the concept of infinite numbers with his discovery of cardinal numbers.

“In mathematics, the art of proposing a question must be held of higher value than solving it.”

George Ferdinand Ludwig Philipp Cantor (1845 – 1918)
 Cultivate the Habit of Problem-Posing