Problem 1. Given any set $A = \{a_1, a_2, a_3, a_4\}$ of four distinct positive integers, we denote the sum $a_1 + a_2 + a_3 + a_4$ by s_A. Let n_A denote the number of pairs (i, j) with $1 \leq i < j \leq 4$ for which $a_i + a_j$ divides s_A. Find all sets A of four distinct positive integers which achieve the largest possible value of n_A.

Problem 2. Let S be a finite set of at least two points in the plane. Assume that no three points of S are collinear. A windmill is a process that starts with a line ℓ going through a single point $P \in S$. The line rotates clockwise about the pivot P until the first time that the line meets some other point belonging to S. This point, Q, takes over as the new pivot, and the line now rotates clockwise about Q, until it next meets a point of S. This process continues indefinitely.

Show that we can choose a point P in S and a line ℓ going through P such that the resulting windmill uses each point of S as a pivot infinitely many times.

Problem 3. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a real-valued function on the set of real numbers that satisfies

$$f(x + y) \leq yf(x) + f(f(x))$$

for all real numbers x and y. Prove that $f(x) = 0$ for all $x \leq 0$.

Language: English

Time: 4 hours 30 minutes.

Each problem is worth 7 marks.