Day 1

- 1. Let $a_1, a_2, \dots, a_{41} \in \mathbb{R}$, such that $a_{41} = a_1, \sum_{i=1}^{40} a_i = 0$, and for any $i = 1, 2, \dots, 40$, $|a_i a_{i+1}| \leq 1$. Determine the greatest possible value of
 - (a) $a_{10} + a_{20} + a_{30} + a_{40};$
 - (b) $a_{10} \cdot a_{20} + a_{30} \cdot a_{40}$.
- 2. In triangle ABC, AB > AC. The bisector of $\angle BAC$ meets BC at D. P is on line DA, such that A lies between P and D. PQ is tangent to $\odot(ABD)$ at Q. PR is tangent to $\odot(ACD)$ at R. CQ meets BR at K. The line parallel to BC and passing through K meets QD, AD, RD at E, L, F, respectively. Prove that EL = KF.
- 3. Let S be a set, |S| = 35, $F = \{f | f : S \to S\}$, called F satisfying P(k), if for any $x, y \in S$, there exist f_1, \dots, f_k (can be equiv), such that $f_k(f_{k-1}(\dots(f_1(x)))) = f_k(f_{k-1}(\dots(f_1(y))))$. Find the minimum value of m, if F satisfy P(2019), then it satisfy P(m).

Day 2

- 1. Find the largest positive constant C such that the following is satisfied: Given n arcs (containing their endpoints) A_1, A_2, \ldots, A_n on the circumference of a circle, where among all sets of three arcs (A_i, A_j, A_k) $(1 \le i < j < k \le n)$, at least half of them has $A_i \cap A_j \cap A_k$ nonempty, then there exists l > Cn, such that we can choose l arcs among A_1, A_2, \ldots, A_n , whose intersection is nonempty.
- 2. Given any positive integer c, denote p(c) as the largest prime factor of c. A sequence $\{a_n\}$ of positive integers satisfies $a_1 > 1$ and $a_{n+1} = a_n + p(a_n)$ for all $n \ge 2$. Prove that there must exist at least one perfect square in sequence $\{a_n\}$.
- 3. Does there exist positive reals a_0, a_1, \ldots, a_{19} , such that the polynomial $P(x) = x^{20} + a_{19}x^{19} + \ldots + a_1x + a_0$ does not have any real roots, yet all polynomials formed from swapping any two coefficients a_i, a_j has at least one real root?