The 39th China Mathematical Olympiad

Day 1

1. Find the smallest $\lambda \in \mathbb{R}$ such that for all $n \in \mathbb{N}_{+}$, there exists $x_{1}, x_{2}, \ldots, x_{n}$ satisfying $n=x_{1} x_{2} \ldots x_{2023}$, where x_{i} is either a prime or a positive integer not exceeding n^{λ} for all $i \in\{1,2, \ldots, 2023\}$.
2. Find the largest real number c such that

$$
\sum_{i=1}^{n} \sum_{j=1}^{n}(n-|i-j|) x_{i} x_{j} \geq c \sum_{j=1}^{n} x_{i}^{2}
$$

for any positive integer n and any real numbers $x_{1}, x_{2}, \ldots, x_{n}$.
3. Let $p \geqslant 5$ be a prime and $S=\{1,2, \ldots, p\}$. Define $r(x, y)$ as follows:

$$
r(x, y)= \begin{cases}y-x & y \geqslant x \\ y-x+p & y<x\end{cases}
$$

For a nonempty proper subset A of S, let

$$
f(A)=\sum_{x \in A} \sum_{y \in A}(r(x, y))^{2}
$$

A good subset of S is a nonempty proper subset A satisfying that for all subsets $B \subseteq S$ of the same size as $A, f(B) \geqslant f(A)$. Find the largest integer L such that there exists distinct good subsets $A_{1} \subseteq A_{2} \subseteq \ldots \subseteq A_{L}$.

Day 2

4. Let $a_{1}, a_{2}, \ldots, a_{2023}$ be nonnegative real numbers such that $a_{1}+a_{2}+\ldots+a_{2023}=100$. Let $A=\left\{(i, j) \mid 1 \leqslant i \leqslant j \leqslant 2023, a_{i} a_{j} \geqslant 1\right\}$. Prove that $|A| \leqslant 5050$ and determine when the equality holds.
5. In acute $\triangle A B C, K$ is on the extension of segment $B C . P, Q$ are two points such that $K P \| A B, B K=B P$ and $K Q \| A C, C K=C Q$. The circumcircle of $\triangle K P Q$ intersects $A K$ again at T. Prove that:
(1) $\angle B T C+\angle A P B=\angle C Q A$.
(2) $A P \cdot B T \cdot C Q=A Q \cdot C T \cdot B P$.
6. Let P be a regular 99-gon. Assign integers between 1 and 99 to the vertices of P such that each integer appears exactly once. (If two assignments coincide under rotation, treat them as the same.) An operation is a swap of the integers assigned to a pair of adjacent vertices of P. Find the smallest integer n such that one can achieve every other assignment from a given one with no more than n operations.
