The 38th Chinese Mathematical Olympiad

Shenzhen, Guangdong Day One 8:00–12:30 Dec. 29, 2022

1. Let $\{a_n\}$ and $\{b_n\}$ be two sequences of positive real numbers such that, for any positive integer *n*,

$$a_{n+1} = a_n - \frac{1}{1 + \sum_{i=1}^n \frac{1}{a_i}}$$
, and $b_{n+1} = b_n + \frac{1}{1 + \sum_{i=1}^n \frac{1}{b_i}}$.

(1) If $a_{100}b_{100} = a_{101}b_{101}$, find the value of $a_1 - b_1$.

(2) If $a_{100} = b_{99}$, which one of $a_{100} + b_{100}$ and $a_{101} + b_{101}$ is larger?

2. Fix an equilateral triangle *ABC* with side length 1. We call $(\triangle DEF, \triangle XYZ)$ a good triangle pair if the points *D*, *E*, and *F* lie in the interior of segments *BC*, *CA*, and *AB*, respectively, the points *X*, *Y*, and *Z* lie on the lines *BC*, *CA*, and *AB*, respectively, and they satisfy the conditions

 $\frac{DE}{20} = \frac{EF}{22} = \frac{FD}{38}, \text{ and } DE \perp XY, EF \perp YZ, FD \perp ZX.$

As $(\triangle DEF, \triangle XYZ)$ runs through all good triangle pairs, determine all possible values of $\frac{1}{S_{\triangle DEF}} + \frac{1}{S_{\triangle XYZ}}$.

3. Fix two positive integers m and n. Fix a way to color the vertices of a regular (2m+2n)gon so that 2m of them are black and the other 2n are white. Define the *coloring distance* d(B, C) between two black points B and C to be the lesser of the numbers of white points on either side of the line BC; similarly, define the *coloring distance* d(W, X) between two white points W and X to be the lesser of the numbers of black points on either side of the line WX.

A black pairing scheme \mathscr{B} means to label the 2m black points as $B_1, \ldots, B_m, C_1, \ldots, C_m$, such that no two segments from B_1C_1, \ldots, B_mC_m intersect each other. For each such \mathscr{B} , put

$$P(\mathscr{B}) = \sum_{i=1}^{m} d(B_i, C_i).$$

A white pairing scheme \mathcal{W} means to label the 2n white points as $W_1, \ldots, W_n, X_1, \ldots, X_n$, such that no two segments from W_1X_1, \ldots, W_nX_n intersect each other. For each such \mathcal{W} , put

$$P(\mathcal{W}) = \sum_{i=1}^{n} d(W_i, X_i).$$

Prove that, regardless of how the 2m + 2n vertices are colored, we always have

$$\max_{\mathscr{B}} P(\mathscr{B}) = \max_{\mathscr{W}} P(\mathscr{W}),$$

where the maxima are taken over all possible black pairing schemes and all possible white pairing schemes, respectively.

2022 年全国中学生数学奥林匹克竞赛 (决赛)

广东 深圳 第一天

2022年12月29日8:00-12:30

1. 设正实数序列 {a_n}, {b_n} 满足: 对任意正整数 n, 均有

$$a_{n+1} = a_n - \frac{1}{1 + \sum_{i=1}^n \frac{1}{a_i}}, \quad b_{n+1} = b_n + \frac{1}{1 + \sum_{i=1}^n \frac{1}{b_i}}.$$

(1) 若 $a_{100}b_{100} = a_{101}b_{101}$, 求 $a_1 - b_1$ 的值.

(2) 若 $a_{100} = b_{99}$, 比较 $a_{100} + b_{100}$ 与 $a_{101} + b_{101}$ 的大小.

 2. 给定一个边长为 1 的正三角形 ABC. 称 (△DEF, △XYZ) 是一个好三角形对, 如果点 D, E, F 分别在线段 BC, CA, AB 内部, 点 X, Y, Z 分别在直线 BC, CA, AB 上, 满足

当 ($\triangle DEF$, $\triangle XYZ$) 取遍所有好三角形对时, 求 $\frac{1}{S_{\triangle DEF}} + \frac{1}{S_{\triangle XYZ}}$ 的所有可能值.

3. 给定正整数 *m* 和 *n*. 将正 2*m* + 2*n* 边形的 2*m* 个顶点染黑色, 其余 2*n* 个顶点 染白色. 定义两个黑点 *B*,*C* 的染色距离 *d*(*B*,*C*) 为直线 *BC* 两侧的白点数目的较小者; 定义两个白点 *W*,*X* 的染色距离 *d*(*W*,*X*) 为直线 *WX* 两侧的黑点数目的较小者.

一个黑点配对方案 \mathscr{B} 是指将所有 2m 个黑点标记为 $B_1, \dots, B_m, C_1, \dots, C_m$, 使得 m 条线段 B_iC_i ($1 \leq i \leq m$) 两两不相交. 对任一黑点配对方案 \mathscr{B} , 记

$$P(\mathscr{B}) = \sum_{i=1}^{m} d(B_i, C_i).$$

一个白点配对方案 \mathscr{W} 是指将所有 2n 个白点标记为 $W_1, \dots, W_n, X_1, \dots, X_n$, 使得 n 条线段 $W_i X_i$ $(1 \leq i \leq n)$ 两两不相交. 对任一白点配对方案 \mathscr{W} , 记

$$P(\mathscr{W}) = \sum_{i=1}^{n} d(W_i, X_i).$$

证明:无论顶点的染色方式如何,均有

$$\max_{\mathscr{B}} P(\mathscr{B}) = \max_{\mathscr{W}} P(\mathscr{W}),$$

其中等式两边的最大值分别在所有可能的黑点配对方案 98 和白点配对方案 1/ 中选取.

The 38th Chinese Mathematical Olympiad

Shenzhen, Guangdong Day Two 8:00–12:30 Dec. 30, 2022

4. Find the minimal integer $n \ge 3$ such that there exist n points $A_1, A_2, ..., A_n$ on a plane with no three being colinear, such that for every $1 \le i \le n$, the midpoint of the segment A_iA_{i+1} is contained in the segment A_jA_{j+1} for some $j \ne i$. Here, $A_{n+1} = A_1$.

5. Prove that there exists a positive number *C* such that the following statement holds: for any infinite arithmetic progression $a_1, a_2, a_3, ...$ of positive integers, if the greatest common divisor of a_1 and a_2 is square-free, then there exists some positive integer $m \le C \cdot a_2^2$ such that a_m is square-free.

Remark: We call a positive integer N square-free, if it is not divisible by any square that is strictly larger than 1.

6. There are some direct one-way flights among $n \ge 8$ airports. Between any two airports *a* and *b*, there is at most one direct one-way flight from *a* to *b* (it is possible to have direct one-way flights both from *a* to *b* and from *b* to *a*). Suppose that, for any set *A* consisting of some airports with $1 \le |A| \le n - 1$, there are at least $4 \cdot \min\{|A|, n - |A|\}$ flights in total departing from the airports in *A* and arriving at the airports not in *A*.

Prove that for any airport *x*, one can depart from *x* and take no more than $\sqrt{2n}$ flights to return to *x*.

2022 年全国中学生数学奥林匹克竞赛 (决赛)

广东 深圳 第二天

2022年12月30日8:00-12:30

4. 求最小的整数 $n \ge 3$, 满足: 平面上存在 $n \land A_1, A_2, \dots, A_n$, 其中任意三点不 共线, 且对任意 $1 \le i \le n$, 存在 $1 \le j \le n$ $(j \ne i)$, 使得线段 $A_j A_{j+1}$ 经过线段 $A_i A_{i+1}$ 的中点. 这里 $A_{n+1} = A_1$.

5. 证明存在正数 C, 使得如下结论成立:

对任意一个无穷多项的正整数等差数列 $a_1, a_2, a_3, \dots, 若 a_1$ 和 a_2 的最大公约数 无平方因子,则存在正整数 $m \leq C \cdot a_2^2$,使得 a_m 无平方因子.

注: 称正整数 N 无平方因子, 若它不被任何大于 1 的平方数整除.

6. 有 $n(n \ge 8)$ 座机场, 某些机场之间有单向直达航线. 对任意两座机场 a, b, 从 a 飞往 b 的单向直达航线至多一条 (可能同时有从 a 飞往 b 的和从 b 飞往 a 的单 向直达航线). 已知对任意由若干座机场构成的集合 A ($1 \le |A| \le n - 1$), 都有至少 $4 \cdot \min\{|A|, n - |A|\}$ 条单向直达航线从 A 中的机场飞往 A 之外的机场.

证明:对任意一座机场 x,都可以从 x 出发,经过不超过 $\sqrt{2n}$ 条单向直达航线回到 机场 x.