Yin Chuan, Ning Xia

First Day 16th August, 8:00 am ~12:00 noon Each problem is 15 marks

- 1. Let n be a given positive integer, and x_1, x_2, \dots, x_n are real numbers such that the sum $\sum_{k=1}^n x_k$ is an integer. Let $d_k = \min_{m \in \mathbb{Z}} |x_k m|, 1 \le k \le n$. Determine, with proof, the maximum value of the sum $\sum_{k=1}^n d_k$.
- 2. As shown in the figure, circles ω_1 and ω_2 are tangent to each other at the point T. M, N are two distinct points on ω_1 and different from T. AB and CD are two chords of ω_2 passing M, N respectively. Prove that if the segments AC, BD, MN meet at the same point K, then the line TK bisects $\angle MTN$.

3. Let $n \ge 2$, be an integer, and x_1, x_2, \dots, x_n are positive real numbers such that $\sum_{i=1}^{n} x_i = 1$. Prove that

$$\left(\sum_{i=1}^n \frac{1}{1-x_i}\right) \left(\sum_{1 \le i < j \le n} x_i x_j\right) \le \frac{n}{2}.$$

4. For 100 straight lines on a plane, let T be the set of all right-angled triangles bounded by some 3 lines. Determine, with proof, the maximum value of |T|.