2015 China Western Mathematical Invitation

Yin Chuan, Ning Xia

Second Day 17th August, 8:00 am ~12:00 noon

Each problem is 15 marks

- 5. Let ABCD be a convex quadrilateral with area S, and AB = a, BC = b, CD = c, DA = d. For any permutation x, y, z, w of a, b, c, d, prove that $S \le \frac{1}{2}(xy + zw)$.
- 6. For a sequence a_1, a_2, \dots, a_m of real numbers, define the following sets $A = \{a_i \mid 1 \le i \le m\}$ and $B = \{a_i + 2a_j \mid 1 \le i, j \le m, i \ne j\}$.

Let *n* be a given integer, and n > 2. For any strictly increasing arithmetic sequence a_1, a_2, \dots, a_n of integers, determine, with proof, the minimum number of elements of set $A \triangle B$, where $A \triangle B = (A \cup B) \setminus (A \cap B)$.

- 7. Let $a \in (0,1)$, $f(z) = z^2 z + a$, $z \in \mathbb{C}$. Prove the following statement holds: For any complex number z with $|z| \ge 1$, there exists a complex number z_0 with $|z_0| = 1$, such that $|f(z_0)| \le |f(z)|$.
- 8. Let k be a positive integer, and $n = (2^k)!$. Prove that $\sigma(n)$ has at least a prime divisor larger than 2^k , where $\sigma(n)$ is the sum of all positive divisors of n.