44th International Mathematical Olympiad

Tokyo, Japan, July 2003

1. Let A be a 101-element subset of the set $S = \{1, 2, 3, \dots, 1000000\}$. Prove that there exist numbers t_1, t_2, \dots, t_{100} in S such that the sets

$$A_j = \{x + t_j \mid x \in A\}$$
 for each $j = 1, 2, \dots, 100$

are pairwise disjoint.

Soln. Let $D = \{x - y \mid x, y \in A, x > y\}$. If $A_i \cap A_j \neq \emptyset$, then there exist $x, y \in A$, such that $x + t_i = y + t_j$ or $0 \neq t_i - t_j = y - x \in D$ (without loss of generality, assume that y > x.

Take $t_1 = 1$ and choose the smallest $t_2 \in S$ such that $t_2 \notin D_1 = \{x + t_1 \mid x \in D\}$. In general, if t_1, \ldots, t_i , i < 100 has been chosen, choose the smallest $t_{i+1} \in S$ such that $t_{i+1} \notin D_k = \{x + t_k \mid x \in D\}$, $k = 1, \ldots, i$. Since $\sum |D_k| \le i \binom{101}{2} \le 5050i < 100000$, such a choice can be made. It's clear that $t_i - t_j \notin D$, $100 \ge i > j \ge 1$. So $A_i \cap A_j = \emptyset$.

2. Find all pairs of positive integers (a, b) such that the number

$$\frac{a^2}{2ab^2 - b^3 + 1}$$

is also a positive integer.

Soln. Let

$$\frac{a^2}{2ab^2 - b^3 + 1} = k.$$

Then

$$a^2 - 2kb^2a + k(b^3 - 1) = 0$$

This discriminant D is the square of some integer d, i.e.,

$$D = (2b^{2}k - b)^{2} + 4k - b^{2} = d^{2}.$$

If $4k - b^2 = 0$, we get

$$a = 2b^2k - \frac{b}{2} \quad \text{or} \quad \frac{b}{2}$$

If $4k - b^2 > 0$, we get

$$d^{2} - (2b^{2}k - b)^{2} = 4k - b^{2} \ge 2(2b^{2}k - 2b + 1),$$

i.e.,

$$4k(b^2 - 1) + (b^2 - 1) \le 0.$$

This implies b = 1. If $4k - b^2 < 0$, then $(2b^2k - b)^2 - d^2 = b^2 - 4k$. But $(2b^2k - b)^2 - (2b^2k - b - 1)^2 = 2(2b^2k - b) - 1$. Since

$$2(2b^{2}k - b) - 1 - (b^{2} - 4k) = b^{2}(4k - 3) + 2b(b - 1) + (4k - 1) > 0,$$

we get a contradiction and so there is no solution. So the solutions are:

$$(a,b) = (2k,1), (k,2k), (8k^4 - k, 2k)$$

3. Given is a convex hexagon with the property that the segment connecting the middle points of each pair of opposite sides in the hexagon is $\frac{\sqrt{3}}{2}$ times the sum of those sides' sum.

Prove that the hexagon has all its angles equal to 120° .

Soln. Let a_1, \ldots, a_6 be vectors for the vertices. Then we know

$$|(a_1 + a_2)/2 - (a_4 + a_5)/2| = \sqrt{(3)/2(|a_1 - a_2| + |a_4 - a_5|)} \ge \sqrt{(3)/2(|a_1 - a_2 + a_5 - a_4|)}$$

(with equality iff the two sides are parallel). So

$$|(a_1 - a_4) + (a_2 - a_5)| \ge \sqrt{(3)}|(a_1 - a_4) - (a_2 - a_5)|.$$

Let $r_1 = a_1 - a_4$, $r_2 = a_2 - a_5$, $r_3 = a_3 - a_6$ (i.e the diagonals) We get

$$|r_1 + r_2| \ge \sqrt{(3)}|r_1 - r_2| \tag{1}$$

and similarly

$$|r_2 + r_3| \ge \sqrt{(3)|r_2 - r_3|} \tag{2}$$

$$|r_1 - r_3| \ge \sqrt{(3)}|r_1 + r_3| \tag{3}$$

(note the sign changes here) with equality iff the corresponding sides are parallel. By squaring (1) we get

$$r_1 \cdot r_2 \ge \frac{1}{4}(|r_1|^2 + |r_2|^2).$$

So if x is the angle between r_1 and r_2 , we see that

$$\cos x \ge \frac{|r_1|^2 + |r_2|^2}{4|r_1||r_2|} \ge \frac{1}{2}$$

(by AM-GM) with equality iff $|r_1| = |r_2|$. So $0 \le x \le \pi/3 = 60^\circ$. Similarly angle between r_2 and r_3 is between 0 and $\pi/3$ whereas angle between r_1 and r_3 is $\ge 2\pi/3$. So this can only hold if all equalities hold. Therefore $|r_1| = |r_2| = |r_3|$, and the diagonals intersect pairwise

at 60° and opposite sides are parallel. Now let ABCDEF be the hexagon. (Then draw a line DG parallel to EB and equal to that segment, i.e., EDGB is a convex parallelogram. So $ED \parallel BG$ but also $ED \parallel AB$, so A, B, G are collinear. Then $\angle ADG = 60^{\circ}$, since $DG \parallel EB$ and AD intersects EB at 60°. Also AD = EB = DG. So $\triangle ADG$ is equilateral. So $\angle DAG = \angle DAB = 60^{\circ}$. Similarly $\angle DAF = 60^{\circ}$. So add them to get $\angle FAB = 120^{\circ}$. Similarly for all the other angles.

4. Given is a cyclic quadrilateral ABCD and let P, Q, R be feet of the altitudes from D to AB, BC and CA respectively. Prove that if PR = RQ then the interior angle bisectors of $\angle ABC$ and $\angle ADC$ are concurrent on AC.

Soln. The well-known 'Pedal Triangle Trick' is "For any point D, let X, Y, Z be feet of the altitudes from D to AB, BC, CA. Then, $XZ = (DA \cdot BC)/2r$, etc, where r is the circumradius of ABC." The proof is very easy, since D, A, Y, Z lie on a circle with diameter DA, by the law of sines, $XZ = DA \sin A = DA \cdot BC/2r$.

By PTT, PR = RQ implies $DA \cdot BC/2r = DC \cdot AB/2r$, so, CD/DA = BC/AB implies the results.

- 5. Let $x_1 \leq x_2 \leq \cdots \leq x_n$ be real numbers, n > 2.
 - (a) Prove the following inequality:

$$\left(\sum_{i,j} |x_i - x_j|\right)^2 \le \frac{2(n^2 - 1)}{3} \sum_{i,j} (x_i - x_j)^2.$$

(b) Prove that the equality in the inequality above is obtained if and only if the sequence (x_k) is an arithmetic progression.

Soln. The inequality is equivalent to

$$\left(\sum_{i < j} |x_i - x_j|\right)^2 \le \frac{(n^2 - 1)}{3} \sum_{i < j} (x_i - x_j)^2$$

Let L be the LHS and R be the sum on the RHS. Further, let $a_i = x_{i+1} - x_i$, i = 1, ..., n-1. Then

$$L = [1(n-1)a_1 + 2(n-2)a_2 + \dots + (n-1)1a_{n-1}]^2$$
$$R = \sum_{i=1}^{n-1} [a_i^2 + (a_i + a_{i+1})^2 + \dots + (a_i + a_{i+1} + \dots + a_{n-1})^2]$$

Using the fact that $1^2 + 2^2 + \dots + k^2 = 2\binom{k+1}{3} + \binom{k+1}{2}$ and that $\binom{i}{i} + \binom{i+1}{i} + \dots + \binom{k}{i} = \binom{k+1}{i+1}$, we get, by Cauchy-Schwarz Inequality,

$$\frac{n^2(n^2-1)}{12} \times R = \left(\sum_{i=1}^{n-1} (1^2+2^2+\dots+(n-i)^2)\right) \times R$$
$$\geq \left(\sum_{i=1}^{n-1} [1a_i+2(a_i+a_{i+1})+\dots+(n-i)(a_i+a_{i+1}+\dots+a_{n-1})]\right)^2$$
$$= \frac{n^2}{4}L$$

Thus the inequality follows. Since equality holds iff $(a_1+a_2)/a_1 = 2$, $(a_1+a_2+a_3)/a_1 = 3$, etc, we see that inequality holds iff $a_1 = a_2 = \cdots = a_{n-1}$, in other words, when the (x_k) is an AP.

6. Prove that for each given prime p there exists a prime q such that $n^p - p$ is not divisible by q for each positive integer n.

Soln. Since

$$\frac{p^p - 1}{p - 1} = 1 + p + p^2 + \dots + p^{p - 1} \equiv p + 1 \pmod{p^2}$$

there is a prime divisor q of $(p^p - 1)/(p - 1)$ which is not congruent to 1 modulo p^2 . We claim that q has the desired properties. Assume, on the contrary, that there exists n such that $n^p \equiv p \pmod{q}$. Then we have $n^{p^2} \equiv p^p \equiv 1 \pmod{q}$ by the definition of q. On the other hand, from Fermat's Little Theorem, $n^{q-1} \equiv 1 \pmod{q}$. Since $p^2 \nmid q - 1$, we have $(p^2, q - 1) \mid p$, which leads to $n^p \equiv 1 \pmod{q}$. Hence we have $p \equiv 1 \pmod{q}$. However, this implies $1 + p + \cdots + p^{p-1} \equiv p \pmod{q}$. From the definition of q, this leads to $p \equiv 0 \pmod{q}$, a contradiction.