44th International Mathematical Olympiad

Tokyo, Japan, July 2003

1. Let A be a 101 -element subset of the set $S=\{1,2,3, \ldots, 1000000\}$. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in S such that the sets

$$
A_{j}=\left\{x+t_{j} \mid x \in A\right\} \quad \text { for each } j=1,2, \ldots, 100
$$

are pairwise disjoint.

Soln. Let $D=\{x-y \mid x, y \in A, x>y\}$. If $A_{i} \cap A_{j} \neq \emptyset$, then there exist $x, y \in A$, such that $x+t_{i}=y+t_{j}$ or $0 \neq t_{i}-t_{j}=y-x \in D$ (without loss of generality, assume that $y>x$.

Take $t_{1}=1$ and choose the smallest $t_{2} \in S$ such that $t_{2} \notin D_{1}=\left\{x+t_{1} \mid x \in D\right\}$. In general, if $t_{1}, \ldots, t_{i}, i<100$ has been chosen, choose the smallest $t_{i+1} \in S$ such that $t_{i+1} \notin D_{k}=\left\{x+t_{k} \mid x \in D\right\}, k=1, \ldots, i$. Since $\sum\left|D_{k}\right| \leq i\binom{101}{2} \leq 5050 i<100000$, such a choice can be made. It's clear that $t_{i}-t_{j} \notin D, 100 \geq i>j \geq 1$. So $A_{i} \cap A_{j}=\emptyset$.
2. Find all pairs of positive integers (a, b) such that the number

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}
$$

is also a positive integer.

Soln. Let

$$
\frac{a^{2}}{2 a b^{2}-b^{3}+1}=k
$$

Then

$$
a^{2}-2 k b^{2} a+k\left(b^{3}-1\right)=0
$$

This discriminant D is the square of some integer d, i.e.,

$$
D=\left(2 b^{2} k-b\right)^{2}+4 k-b^{2}=d^{2}
$$

If $4 k-b^{2}=0$, we get

$$
a=2 b^{2} k-\frac{b}{2} \quad \text { or } \quad \frac{b}{2}
$$

If $4 k-b^{2}>0$, we get

$$
d^{2}-\left(2 b^{2} k-b\right)^{2}=4 k-b^{2} \geq 2\left(2 b^{2} k-2 b+1\right)
$$

i.e.,

$$
4 k\left(b^{2}-1\right)+\left(b^{2}-1\right) \leq 0
$$

This implies $b=1$. If $4 k-b^{2}<0$, then $\left(2 b^{2} k-b\right)^{2}-d^{2}=b^{2}-4 k$. But $\left(2 b^{2} k-b\right)^{2}-$ $\left(2 b^{2} k-b-1\right)^{2}=2\left(2 b^{2} k-b\right)-1$. Since

$$
2\left(2 b^{2} k-b\right)-1-\left(b^{2}-4 k\right)=b^{2}(4 k-3)+2 b(b-1)+(4 k-1)>0
$$

we get a contradiction and so there is no solution. So the solutions are:

$$
(a, b)=(2 k, 1),(k, 2 k),\left(8 k^{4}-k, 2 k\right)
$$

3. Given is a convex hexagon with the property that the segment connecting the middle points of each pair of opposite sides in the hexagon is $\frac{\sqrt{3}}{2}$ times the sum of those sides' sum.

Prove that the hexagon has all its angles equal to 120°.

Soln. Let a_{1}, \ldots, a_{6} be vectors for the vertices. Then we know
$\left|\left(a_{1}+a_{2}\right) / 2-\left(a_{4}+a_{5}\right) / 2\right|=\sqrt{(3) / 2\left(\left|a_{1}-a_{2}\right|+\left|a_{4}-a_{5}\right|\right) \geq \sqrt{(3)} / 2\left(\left|a_{1}-a_{2}+a_{5}-a_{4}\right|\right)}$
(with equality iff the two sides are parallel). So

$$
\left|\left(a_{1}-a_{4}\right)+\left(a_{2}-a_{5}\right)\right| \geq \sqrt{(3)}\left|\left(a_{1}-a_{4}\right)-\left(a_{2}-a_{5}\right)\right| .
$$

Let $r_{1}=a_{1}-a_{4}, r_{2}=a_{2}-a_{5}, r_{3}=a_{3}-a_{6}$ (i.e the diagonals) We get

$$
\begin{equation*}
\left|r_{1}+r_{2}\right| \geq \sqrt{(3)}\left|r_{1}-r_{2}\right| \tag{1}
\end{equation*}
$$

and similarly

$$
\begin{align*}
& \left|r_{2}+r_{3}\right| \geq \sqrt{(3)}\left|r_{2}-r_{3}\right| \tag{2}\\
& \left|r_{1}-r_{3}\right| \geq \sqrt{(3)}\left|r_{1}+r_{3}\right| \tag{3}
\end{align*}
$$

(note the sign changes here) with equality iff the corresponding sides are parallel. By squaring (1) we get

$$
r_{1} \cdot r_{2} \geq \frac{1}{4}\left(\left|r_{1}\right|^{2}+\left|r_{2}\right|^{2}\right) .
$$

So if x is the angle between r_{1} and r_{2}, we see that

$$
\cos x \geq \frac{\left|r_{1}\right|^{2}+\left|r_{2}\right|^{2}}{4\left|r_{1}\right|\left|r_{2}\right|} \geq \frac{1}{2}
$$

(by AM-GM) with equality iff $\left|r_{1}\right|=\left|r_{2}\right|$. So $0 \leq x \leq \pi / 3=60^{\circ}$. Similarly angle between r_{2} and r_{3} is between 0 and $\pi / 3$ whereas angle between r_{1} and r_{3} is $\geq 2 \pi / 3$. So this can only hold if all equalities hold. Therefore $\left|r_{1}\right|=\left|r_{2}\right|=\left|r_{3}\right|$, and the diagonals intersect pairwise
at 60° and opposite sides are parallel. Now let $A B C D E F$ be the hexagon. (Then draw a line $D G$ parallel to $E B$ and equal to that segment, i.e., $E D G B$ is a convex parallelogram. So $E D \| B G$ but also $E D \| A B$, so A, B, G are collinear. Then $\angle A D G=60^{\circ}$, since $D G \| E B$ and $A D$ intersects $E B$ at 60°. Also $A D=E B=D G$. So $\triangle A D G$ is equilateral. So $\angle D A G=\angle D A B=60^{\circ}$. Similarly $\angle D A F=60^{\circ}$. So add them to get $\angle F A B=120^{\circ}$. Similarly for all the other angles.
4. Given is a cyclic quadrilateral $A B C D$ and let P, Q, R be feet of the altitudes from D to $A B, B C$ and $C A$ respectively. Prove that if $P R=R Q$ then the interior angle bisectors of $\angle A B C$ and $\angle A D C$ are concurrent on $A C$.

Soln. The well-known 'Pedal Triangle Trick' is "For any point D, let X, Y, Z be feet of the altitudes from D to $A B, B C, C A$. Then, $X Z=(D A \cdot B C) / 2 r$, etc, where r is the circumradius of $A B C$." The proof is very easy, since D, A, Y, Z lie on a circle with diameter $D A$, by the law of sines, $X Z=D A \sin A=D A \cdot B C / 2 r$.

By PTT, $P R=R Q$ implies $D A \cdot B C / 2 r=D C \cdot A B / 2 r$, so, $C D / D A=B C / A B$ implies the results.
5. Let $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ be real numbers, $n>2$.
(a) Prove the following inequality:

$$
\left(\sum_{i, j}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{2\left(n^{2}-1\right)}{3} \sum_{i, j}\left(x_{i}-x_{j}\right)^{2} .
$$

(b) Prove that the equality in the inequality above is obtained if and only if the sequence $\left(x_{k}\right)$ is an arithmetic progression.

Soln. The inequality is equivalent to

$$
\left(\sum_{i<j}\left|x_{i}-x_{j}\right|\right)^{2} \leq \frac{\left(n^{2}-1\right)}{3} \sum_{i<j}\left(x_{i}-x_{j}\right)^{2} .
$$

Let L be the LHS and R be the sum on the RHS. Further, let $a_{i}=x_{i+1}-x_{i}, i=1, \ldots, n-1$. Then

$$
\begin{aligned}
L & =\left[1(n-1) a_{1}+2(n-2) a_{2}+\cdots+(n-1) 1 a_{n-1}\right]^{2} \\
R & =\sum_{i=1}^{n-1}\left[a_{i}^{2}+\left(a_{i}+a_{i+1}\right)^{2}+\cdots+\left(a_{i}+a_{i+1}+\cdots+a_{n-1}\right)^{2}\right]
\end{aligned}
$$

Using the fact that $1^{2}+2^{2}+\cdots+k^{2}=2\binom{k+1}{3}+\binom{k+1}{2}$ and that $\binom{i}{i}+\binom{i+1}{i}+\cdots+\binom{k}{i}=\binom{k+1}{i+1}$, we get, by Cauchy-Schwarz Inequality,

$$
\begin{aligned}
\frac{n^{2}\left(n^{2}-1\right)}{12} \times R & =\left(\sum_{i=1}^{n-1}\left(1^{2}+2^{2}+\cdots+(n-i)^{2}\right)\right) \times R \\
& \geq\left(\sum_{i=1}^{n-1}\left[1 a_{i}+2\left(a_{i}+a_{i+1}\right)+\cdots+(n-i)\left(a_{i}+a_{i+1}+\cdots+a_{n-1}\right)\right)^{2}\right. \\
& =\frac{n^{2}}{4} L
\end{aligned}
$$

Thus the inequality follows. Since equality holds iff $\left.\left(a_{1}+a_{2}\right) / a_{1}=2,\left(a_{1}+a_{2}+a_{3}\right) / a_{1}\right)=3$, etc, we see that inequality holds iff $a_{1}=a_{2}=\cdots=a_{n-1}$, in other words, when the $\left(x_{k}\right)$ is an AP.
6. Prove that for each given prime p there exists a prime q such that $n^{p}-p$ is not divisible by q for each positive integer n.

Soln. Since

$$
\frac{p^{p}-1}{p-1}=1+p+p^{2}+\cdots+p^{p-1} \equiv p+1 \quad\left(\bmod p^{2}\right)
$$

there is a prime divisor q of $\left(p^{p}-1\right) /(p-1)$ which is not congruent to 1 modulo p^{2}. We claim that q has the desired properties. Assume, on the contrary, that there exists n such that $n^{p} \equiv p \quad(\bmod q)$. Then we have $n^{p^{2}} \equiv p^{p} \equiv 1 \quad(\bmod q)$ by the definition of q. On the other hand, from Fermat's Little Theorem, $n^{q-1} \equiv 1(\bmod q)$. Since $p^{2} \nmid q-1$, we have $\left(p^{2}, q-1\right) \mid p$, which leads to $n^{p} \equiv 1(\bmod q)$. Hence we have $p \equiv 1(\bmod q)$. However, this implies $1+p+\cdots+p^{p-1} \equiv p \quad(\bmod q)$. From the definition of q, this leads to $p \equiv 0 \quad(\bmod q)$, a contradiction.

