
34th International Mathematical Olympiad

Turkey, July 1993.

1. Let f(x) = xn + 5xn−1 + 3 where n > 1 is an integer. Prove that f(x) cannot be
expressed as the product of two polynomials, each of which has all its coefficients integers
and degree at at least 1.

Soln. Suppose on the contrary that f(x) = g(x)h(x) where g(x) = a0 + a1x + · · ·+ asx
s,

h(x) = b0 + b1x + · · · + btx
t, s + t = n, as = bt = 1 and s, t ≥ 1. Then a0b0 = 3. Thus

3 divides exactly one of a0, b0, say 3 | a0. Let k be the smallest integer such that 3 - ak.
Then, since k ≤ n− 1 the coeeficient of xk in f(x) is either 0 or 5. If it is 0, i.e., k < n− 1,
then

0 = a0bk + a1bk−1 + · · ·+ ak−1b1 + akb0.

Since 3 | ai for i = 0, . . . , k − 1, we have 3 | akb0. But 3 - b0. So 3 | ak, a contradiction.

If it is 5, then k = n− 1. Thus h(x) = 1 + x and ai = 3a′i for i = 1, 2, . . . , n− 2. Thus
we have

f(x) = 3 + 3(a′1 + 1)x + 3(a′2 + a′1)x
2 + · · ·+ 3(a′n−2 + a′n−3)x

n−2 + (3a′n−2 + 1)xn−1 + xn.

Thus a′i ≡ ±1 (mod 5) for i = 1, 2, . . . , n− 2. This means 5 - 3a′n−2 + 1 = 5, a contradic-
tion.

2. Let D be a point inside the acute-angled triangle ABC such that

∠ADB = ∠ACB + 90◦ and AC ·BD = AD ·BC

(a) Calculate the value of the ratio AB·CD
AC·BD

(b) Prove that the tangent at C to the circumcircles of the triangles ACD and BCD are
perpendicular.

Soln. Draw DE equal and perpendicular to DB. Then ∠ADE = ∠ACB. Also

AD

AC
=

BD

BC
=

DE

BC
.

If follows that triangles ADE and ACB are similar, since they have sides about equal
angles being proportional. Hence ∠CAB = ∠DAE and AB/AE = C/AD. Now

∠CAD = ∠CAB − ∠DAB = ∠DAE − ∠DAB = ∠BAE.

Consequenctly triangles CAD and BAE are similar. Therefore

AC

AB
=

CD

BE
=

CD√
2BD
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since DBE is a right-angled isosceles triangle. hence the value of the required ratio is
√

2.

Let CT,CU be the tangents at C to the circles ACD, BCD respectively. Then
∠DCT = ∠DAC and ∠DCU = ∠DBC. Now ∠ADE + ∠DAB + ∠DBA = 180◦ − 90◦ =
90◦. So by similar triangles

∠ACB + ∠CAB − ∠CAD + ∠ABC − ∠DBC = 90◦

and therefore ∠CAD + ∠DBC = 180◦ − 90◦ = 90◦. Thus ∠TCU = 90◦ as required.

3. On an infinite chessboard, a game is played as follows:

At the start, n2 pieces are arranged on the chessboard in an n× n block of adjoining
sqaures, one piece in each square. A move in the game is a jump in a horizontal or
vertical direction over an adjacnet occupied square to an an unoccupied square immediately
beyond. The piece which has been jumped over is hten removed.

Find those values of n for which the game can end with one piece remaining on the
board.

Soln. We replace the squares by (x, y) ∈ Z2 and assume the pieces are originaly in 1 ≤
x, y ≤ n. For every k ∈ Z, denote by s(k, j) the number of occupied points satisfying
x + y = k after j moves and for i = 0, 1, 2, let

Si(j) =
∑

i≡k (mod 3)

s(k, j).

If n = 3p, then
S0(0) = 2(3 + 6 + · · ·+ 3p− 3) + 3p = 3p2,

whence S1(0) = S2(0) = 3p2. So either every Si(0) is even or every Si(0) is odd. Every
move changes s(k, j) for three consecutive values of k, two s’s diminish by one and one
increases by one. So every move reverses the parity of all the Si’s. If the game should end
as required, one of the Si(n2− 1)′s should be one and the others zero. So if n is a multiple
of 3, the game cannot end as required.

Now assume that n is not a multiple of 3. If n = 2, the moves

(1, 1) → (3, 1), (1, 2) → (3, 2), (3, 2) → (3, 0)

show that the end situation can be achieved. If n ≥ 3, the moves

(2, 1) → (0, 1), (1, 3) → (1, 1), (0, 1) → (2, 1)

show that one can always remove the three pieces in a row from an L-shpaed 4-piece
configurationm which is bordered on one long side by an unoccupied area. In this manner
one can remove two strips from the original n×n square leaving an (n−3)×(n−3) square.
The process can be continued until a 2× 2 square is left. Thus the game will end.
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4. For tthree points P,Q,R in the plane, we define m(PQR) to be the minimum of
the lengths of the altitudes of the triangle PQR (where m(PQR) = 0 when P,Q,R are
collinear.) Let A,B,C be given points in the plane. Prove that for any point X in the
plane,

m(ABC) ≤ m(ABX) + m(AXC) + m(XBC).

Soln. Key idea is the m(ABC) = 2[ABC]/BC if BC is the longest side.

5. Let N = {1, 2, . . .}. Determine whether or not there exists a function f : N → N such
that f(1) = 2,

f(f(n) = f(n) + n, f(n) < f(n + 1) for all n ∈ N.

Soln. Let α = (
√

5 + 1)/2. Since α2 − α− 1 = 0, the function g(x) = αx satisfies

g(g(n))− g(n)− n = 0 for all n ∈ N.

We shall that the function f(n) = bg(n) + 1
2c satisfies the requirements. We oberseve:

(i) f is strictly increasing, because α > 1 so g(n + 1) > g(n) + 1 holds.

(ii) Since 2 < α + 1
2 < 3 holds, then f(1) = 2.

(iii) By the definition, |f(n)−g(n)| < 1/2 holds for all n. Then f(f(n)) = f(n)+n follows
from the fact that f(f(n))− f(n)− n is an integer and the estimate:

|f(f(n))− f(n)− n|
= |g(g(n))− g(n)− g(g(n)) + f(f(n))− f(n) + g(n)|
= |g(g(n))− f(f(n)) + f(n)− g(n)|
= |g(g(n))− g(f(n)) + g(f(n))− f(f(n)) + f(n)− g(n)|
= |(α− 1)(g(n))− f(n)) + g(f(n))− f(f(n))|
≤ (α− 1)|(g(n))− f(n)|+ |g(f(n))− f(f(n))|

≤ α− 1
2

+
1
2

< 1.

Note f(n) = bαn + 1
2c also works.

6. Let n > 1 be an integer. there are n lamps L0, L1, . . . , Ln−1 arranged in a circle. Each
lamp is either ON or OFF. A sequence of steps S0, S1, . . . is carried out. Step Sj affects
the state of Lj only (leaving the state of all other lamps unaltered) as follows:

if Lj−1 is ON, Sj changes the state of Lj from ON to OFF ot from OFF to ON;

if Lj−1 is OFF, Sj leaves the state of Lj unchaged.
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Initially all lamps are ON. Show that

(a) there is a positive integer M(n) such that after M(n) steps all the lamps are ON
again;

(b) if n has he form 2k then all lamps are ON after n2 − 1 steps;

(c) if n has the form 2k + 1 then all the lamps are ON after n2 − n + 1 steps.

Soln. Let 1 represents ON and 0 represents OFF and we work in mod 2.

(a) The number of states is finite so after a finite number of steps there must be a
repetition. Hence the operation is reversible, the first to repeat is the initial state where
every lamp is ON.

(b) Let the number of lamps be n = 2k. Let Pm be the state where the lamps are
partitioned in blocks of 2m, where lamps in the blocks 1, 3, 5, . . . are all 1, while those in the
other blocks are all 0. A round of operations is simply a consecutive set of 2k operations
starting with the first lamp. We claim that after 2m rounds of operations, we get the state
Pm+1. The proof is by induction on m. For m = 0 it is clear that after one round we can
go from

1010101010 . . . to 1100110011 . . . .

So we assume that the result is true for m. Now consider the state Pm+1. After one round
we get

(1010 . . .)(0000 . . .)(1010 . . .)(0000 . . .) . . .

where the first parenthesis is a block of 2m+1 alternating between 1 and 0, the second is a
block of 0 and so on. By the induction hypothesis, we can transformed the first block to
a block of ones in 1 + 2 + · · ·+ 2m = 2m+1 − 1 rounds. In the previous round, i.e., round
2m+1 − 2, the first block consists of a one follow by zeroes while the second block is all
zeroes. The same goes for the thrid and fourth blocks, etc. After another round, the first
two blocks are all ones while the the next two are all zeroes, and so on. Thus after 2m+1

rounds Pm is transformed into Pm+1.

Now after n − 1 steps, we get P0. Thus after 1 + 2 + · · · + 2k−1 = 2k − 1 = n − 1
rounds, we get Pk. But Pk is the state where all lamps are ON. Thus the total number of
steps is (n− 1) + n(n− 1) = n2 − 1.

(c) After one round, we get
01010 · · · 10

which is a 0 followed by P1. After one more round we get a 0 followed by P2, and so on.
So after a total of 1 + 1 + 2 + 4 + · · ·+ 2k−1 = 2k = n− 1 rounds, we get a 0 followed by
ones. One more step will turned the lamps into ON. Thus the total number of moves is
n(n− 1) + 1 = n2 − n + 1.

Second soln. (Official) Represent ON by 1 and OFF by 0 and work in mod 2. Suppose
we are given the state

(a0, a1, . . . , an−1) (∗)
After S0, we get (a0 + an−1, a1, a2, . . . , an−1). Due to rotational symmetry, this state is
equivelent to

(a1, a2, . . . , an−1, a0 + an−1) (†).
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This is convenient as we shall then always apply the same operation. Thus an operation
transforms (∗) into (†). It’s convenient to represent the state (∗) by the polynomial

P (x) = an−2 + an−3x + an−4x
2 + · · ·+ a0x

n−2 + an−1x
n−1.

A one step rotation can be conveniently represented by xP (x). The state (†) is represented
by the polynomial

Q(x) = an−1 + an−2x + an−3x
2 + · · ·+ a1x

n−2 + (a0 + an−1)xn−1.

Now

xP (x)−Q(x) = an−1x
n − an−1x

n−1 − an−1 =
{

xn + xn−1 + 1 if an−1 = 1
0 if an−1 = 0

Thus
xP (x) ≡ Q(x) (mod xn + xn−1 + 1)

For (a), we need to show that there exists a positive integer M(n) such that xM(n) ≡ 1.
Since the residue class is finite, there are two integers p, q such that xp ≡ xp+q. This implies
xp(xq − 1) ≡ 0. Since xp 6≡ 0, we have xq ≡ 1.

For (b), we take n = 2k, and need to show xn2−1 ≡ 1. We have

xn2
≡ (xn−1 + 1)n ≡ xn2−n + 1.

Thus
(1 + xn)xn2−n ≡ xn2

≡ 1.

For (c), we take n = 2k + 1. We have

xn2−1 ≡ (xn+1)n−1 ≡ (x + xn)n−1 ≡ x(xn−1 + xn(n−1)).

Thus
(1 + xn−1xn2−n ≡ xn−1.

Since 1 = xn−1 ≡ xn, we have xn2−n+1 ≡ 1.
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