
Singapore International Mathematical Olympiad

National Team Selection Test I 2006

Time allowed: 4.5 hours 12 May 2006

No calculator is allowed

1. Let ANC, CLB and BKA be triangles erected on the outside of the triangle
ABC such that ∠NAC = ∠KBA = ∠LCB and ∠NCA = ∠KAB = ∠LBC.
Let D, E, G and H be the midpoints of AB, LK,CA and NA respectively.
Prove that DEGH is a parallelogram.

2. Let n be an integer greater than 1 and let x1, x2, . . . , xn be real numbers such
that

|x1|+ |x2|+ · · ·+ |xn| = 1 and x1 + x2 + · · ·+ xn = 0.

Prove that ∣∣∣∣x1

1
+

x2

2
+ · · ·+ xn

n

∣∣∣∣ ≤ 1

2

(
1− 1

n

)
.

3. A pile of n pebbles is placed in a vertical column. This configuration is
modified according to the following rules. A pebble can be moved if it is at
the top of a column which contains at least two more pebbles than the column
immediately to its right. (If there are no pebbles to the right, think of this as
a column with 0 pebbles.) At each stage, choose a pebble from among those
that can be moved (if there are any) and place it at the top of the column
to its right. If no pebbles can be moved, the configuration is called a final
configuration. For each n, show that, no matter what choices are made at each
stage, the final configuration obtained is unique. Describe that configuration
in terms of n.



Singapore International Mathematical Olympiad

National Team Selection Test II 2006

Time allowed: 4.5 hours 13 May 2006

No calculator is allowed

1. In the plane containing a triangle ABC, points A′, B′ and C ′ distinct from
the vertices of 4ABC lie on the lines BC, AC and AB respectively such that
AA′, BB′ and CC ′ are concurrent at G and AG/GA′ = BG/GB′ = CG/GC ′.
Prove that G is the centroid of 4ABC.

2. Let S be a set of sequences of length 15 formed by using the letters a and b
such that every pair of sequences in S differ in at least 3 places. What is the
maximum number of sequences in S?

3. Let n be a positive integer such that the sum of all its positive divisors (in-
clusive of n) equals to 2n + 1. Prove that n is an odd perfect square.



1. Let ANC, CLB and BKA be triangles erected on the outside of the trian-
gle ABC such that ∠NAC = ∠KBA = ∠LCB and ∠NCA = ∠KAB =
∠LBC. Let D, E, G and H be the midpoints of AB, LK,CA and NA re-
spectively. Prove that DEGH is a parallelogram.

Solution. The given condition means that 4ANC, 4CLB and 4BKA are
all similar.
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Let F be the midpoint of BK. Note that DF is parallel to AK and EF is
parallel LB. Since ∠DFE = 180◦ − ∠DFK − ∠EFB = 180◦ − (∠KAB +
∠ABK) − ∠LBP = 180◦ − ∠LBC − ∠ABK − ∠LBP = ∠ABC and
DF/EF = AK/LB = AB/CB, we see that 4DFE is similar to 4ABC.
Thus ∠BAC − ∠ACN = ∠FDE − ∠FDB so that DE is parallel to NC
and HG. Next, we also have ∠EDR = ∠FDR − ∠FDE = ∠FDB +
∠BDR − ∠FDE = ∠KAB + ∠BAC − ∠FDE = ∠KAB, and DE/DR =
2DE/AC = 2DF/AB = AK/AB so that 4EDR is similar to 4KAB. That
means 4EDR is similar to 4NCA. Therefore, DE/HG = 2DE/NC =
2DR/AC = 1. Consequently, DE is parallel and equal to HG. This shows
that DEGH is a parallelogram.

[Remark by Lim Wei Quan] Let M be the 4th vertice of the parallelogram
AKBM . Let F be the midpoint of BC. Then since triangles BMD, BLF ,
CNG are similar, ML = DF×BL/BF = AC/2×2CN/CA = CN Similarly,
MN = CL Thus, MNCL is a parallelogram This gives, DE = ML/2 =
CN/2 = GH Also, DE||ML||CN ||GH Therefore, DEGH is a parallelogram.

2. Let n be an integer greater than 1 and let x1, x2, . . . , xn be real numbers such
that

|x1|+ |x2|+ · · ·+ |xn| = 1 and x1 + x2 + · · ·+ xn = 0.

Prove that ∣∣∣∣x1

1
+

x2

2
+ · · ·+ xn

n

∣∣∣∣ ≤ 1

2

(
1− 1

n

)
.

Solution. The following lemma can be proved by direct simplification.

Lemma. Let Sk = a1 + a2 + · · ·+ ak. Then

n∑
k=1

akbk = Snbn +
n−1∑
k=1

Sk(bk − bk+1).



Let Si = x1 + x2 + · · ·+ xi. By the given condition, Sn = 0 and |Si| ≤ 1
2

for
i = 1, · · · , n− 1. To see this, suppose |Si| > 1

2
. Then 1 = |x1|+ |x2|+ · · ·+

|xn| ≥ |x1 + · · ·+ xi|+ |xi+1 + · · ·+ xn| = |Si|+ | − Si| = 2|Si| > 1, which is
a contradiction. By the lemma, we have

n∑
k=1

xk

k
= Sn ·

1

n
+

n−1∑
k=1

Sk

(
1

k
− 1

k + 1

)
.

Thus ∣∣∣∣∣
n∑

k=1

xk

k

∣∣∣∣∣ =

∣∣∣∣∣
n−1∑
k=1

Sk

(
1

k
− 1

k + 1

)∣∣∣∣∣ ≤
n−1∑
k=1

|Sk|
(

1

k
− 1

k + 1

)

≤
n−1∑
k=1

1

2

(
1

k
− 1

k + 1

)
=

1

2

(
1− 1

n

)
.

Second Solution. The inequality is achievable when x1 = ±1
2

and xn = ∓1
2

and the rest of xi = 0. So the inequality can be proved by the smoothing
principle.

Let a1 ≥ · · · ≥ ak ≥ 0 be the nonnegative terms among the xi’s and b1 ≤
b2 ≤ · · · ≤ bl < 0 be the negative terms among the xi’s. Then we have
a1 + · · ·+ ak = 1/2 and b1 + · · ·+ bl = −1/2.

Without loss of generality, we can assume that the contribution from the
nonnegative terms are greater than the contributions from the negative terms
in the LHS. Note that for 0 < i < j, and x, y ≥ 0, we have x/i + y/j ≤
(x + y)/i + 0/j. Applying this, we see that the LHS is less than or equal to∑k

i=1 ai

1
+

0

2
+ · · ·+ 0

n− 1
+

∑k
i=1 bi

n
=

1

2

(
1− 1

n

)
.

3. A pile of n pebbles is placed in a vertical column. This configuration is
modified according to the following rules. A pebble can be moved if it is
at the top of a column which contains at least two more pebbles than the
column immediately to its right. (If there are no pebbles to the right, think
of this as a column with 0 pebbles.) At each stage, choose a pebble from
among those that can be moved (if there are any) and place it at the top
of the column to its right. If no pebbles can be moved, the configuration is
called a final configuration. For each n, show that, no matter what choices
are made at each stage, the final configuration obtained is unique. Describe
that configuration in terms of n.

Solution. At any stage, let pi be the number of pebbles in column i for
i = 1, 2, . . . , where column 1 denotes the leftmost column. We will show that
in the final configuration, for all i for which pi > 0 we have pi = pi+1 + 1,
except that for at most one i∗, pi∗ = pi∗+1. Therefore, the configuration
looks like the figure shown below, where there are c nonempty columns and



there are from 1 to c pebbles in the last diagonal row of the triangular
configuration. In particular, let tk = 1 + 2 + · · ·+ k = k(k + 1)/2 be the kth
triangular number. Then c is the unique integer for which tc−1 < n ≤ tc. Let
s = n− tc−1. Then there are s pebbles in the rightmost diagonal, and so the
two columns with the same height are columns c− s and c− s + 1 (except if
s = c, in which case no nonempty columns have equal height).
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Final Configuration for n = 12

Another way to say this is

pi =

{
c− i if i ≤ c− s,
c− i + 1 if i > c− s.

(1)

To prove this claim, we show that

(a) At any stage of the process, p1 ≥ p2 ≥ · · · .

(b) At any stage, it is not possible for there to be i < j for which pi = pi+1,
pj = pj+1, and pi+1 − pj ≤ j − i− 1 (that is, the average decrease per
column from column i + 1 to column j is 1 or less).

(c) At any final configuration, pi − pi+1 = 0 or 1, with at most one i for
which pi > 0 and pi − pi+1 = 0.

In the proofs of (a), (b) and (c), we use the following terminology. Let a
k-switch be the movement of one pebble from column k to column k +1, and
for any column i let a drop be the quantity pi − pi+1.

To prove (a), suppose a sequence of valid moves resulted in pi < pi+1 for the
first time at some stage. Then the move leading to this stage must have been
an i-switch, but it would be contrary to the condition that column i have at
least 2 more pebbles than column i + 1, to allow switches.

To prove (b), if such a configuration were obtainable, there would be a mini-
mum value of j − i overall such obtainable configurations, and we now show
that there is no minimum. Suppose p1, p2, . . . was such a minimal configura-
tion. It cannot be that j = i + 1, for what would columns i, i + 1, i + 2 look
like just before the move that made the height equal? The move must have
been a k-switch for i − 1 ≤ k ≤ i + 2, but if so the configuration before the
switch was impossible (not decreasing).



Now suppose j > i+1. Consider the first configuration C in the sequence for
which columns i, i + 1, j, j + 1 are at their final heights. Note that from pi+1

to pj the column decrease by exactly one each time in C, because if there
was a drop of 2 or more at some point, there would have to be another drop
of 0 in this interval to obtain an average of 1 or less, and thus j − i is not
minimal. The move leading to C was either an i-switch or a j-switch. If it
was the former, at the previous stage columns i + 1 and i + 2 had the same
height, violating the minimality of j− i. A similar contradiction arises if the
move was a j-switch.

Finally, to prove (c), if any drop is 2 or more, the configuration isn’t final.
However, if all drops are 0 or 1, and there were two drops of 0 between
nonempty columns (say between i and i + 1 and between j and j + 1), then
(b) would be violated. Thus a final configuration that satisfied (b) also
satisfies (c).

4. In the plane containing a triangle ABC, points A′, B′ and C ′ distinct from
the vertices of 4ABC lie on the lines BC, AC and AB respectively such that
AA′, BB′ and CC ′ are concurrent at G and AG/GA′ = BG/GB′ = CG/GC ′.
Prove that G is the centroid of 4ABC.

Solution. We take all segments to be directed segments: thus AG = −GA,
etc. We are given the condition

AG

GA′ =
BG

GB′ =
CG

GC ′ . (1)

Now B, A′ and C are collinear points, one on each side (extended if necessary)
of triangle AGB′. By Menelaus’ theorem, we have

AA′

A′G
· GB

BB′ ·
B′C

CA
= −1. (2)

Similarly, from triangle CGB′ and collinear points C ′, B and A, we have

CC ′

C ′G
· GB

BB′ ·
B′A

AC
= −1. (3)
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By adding 1 to each member of AG/GA′ = CG/GC ′ from (1), we have

AA′

GA′ =
CC ′

GC ′ . (4)

An easy combination of (2),(3),(4) gives

CB′ = B′A. (5)

Since these are directed segments, (5) means that B′ is the midpoint of AC.
Similarly, by selecting other triangles, we obtain C ′ as midpoint of AB, and
A′ as midpoint of BC. Thus G is the centroid of 4ABC.

So (1) implies that A′, B′, C ′ lie in the open segments BC, CA, AB, respec-
tively, and the “open segments” restriction in the hypothesis is unnecessary.
In order for any other conclusion to hold, we must interpret the symbols in
(1) to mean undirected segments. Then, upon replacing them by directed
segments we see that either all ratios have the same sign - the case already
discussed - or two have one sign and the third the opposite sign. Suppose,
say,

AG

GA′ =
CG

GC ′ = −BG

GB′ . (6)

By the original argument, the first equation implies (5) so that B′ is the
midpoint of AC. From AG/GA′ = −BG/GB′, we have

AG

GA′ +
GA′

GA′ − 1 = −BG

GB′ −
GB′

GB′ + 1,

whence
AA′

GA′ = 2− BB′

GB′ . (7)

Now (5) implies that B′C/CA = −1/2, whence (2) becomes

AA′

A′G
· GB

BB′ = 2. (8)

Putting GB/BB′ = GB′/BB′ − 1 in (8) and eliminating AA′/A′G from (7)
and (8), we obtain

2r2 − r + 1 = 0, (9)

where r = GB′/BB′. But the roots of (9) are not real, so that this case
cannot hold. Thus the case of medians is the only conclusion.

5. Let S be a set of sequences of length 15 formed by using the letters a and b
such that every pair of sequences in S differ in at least 3 places. What is the
maximum number of sequences in S?

Solution. The answer is 211 = 2048.



We may identify a as 0 and b as 1. Then S is simply the set of binary 15-
tuples satisfying the condition that any two tuples in S differ in at least 3
places. For each element s of this set S, there are exactly 15 + 1 = 16 tuples
(including itself) that differ from it in at most 1 place. Let Bs denote the
set of these tuples. For any distinct s, t ∈ S, we must have Bs ∩ Bt = ∅,
otherwise s and t would differ in at most two places. Hence |S| · 16 ≤ 215,
and so |S| ≤ 211. An explicit S meeting the upper bound is then given as
follows:

For each of the 211 tuples (a1, . . . , a11), associate to it the tuple a = (a1, . . . , a15)
in S, where

a12 = a5 + a6 + a7 + a8 + a9 + a10 + a11 (mod 2)
a13 = a2 + a3 + a4 + a8 + a9 + a10 + a11 (mod 2)
a14 = a1 + a3 + a4 + a6 + a7 + a10 + a11 (mod 2)
a15 = a1 + a2 + a4 + a5 + a7 + a9 + a11 (mod 2)

To verify that this S is indeed valid, simply check that if any one of the first
eleven values of a are changed, then at least two of a12, a13, a14, a15 must also
be changed, and if any two of the first eleven values of a are changed, then
at least one of a12, a13, a14, a15 must also be changed.

6. Let n be a positive integer such that the sum of all its positive divisors
(inclusive of n) equals to 2n + 1. Prove that n is an odd perfect square.

Solution. Let n = 2qr, where r is odd. Thus 2n + 1 = σ(n) = σ(2qr) =
σ(2q)σ(r) = (2q+1 − 1)σ(r).

Suppose r is not a perfect square. Let d1, d2, . . . , dk be all the distinct divisors
of r such that 1 ≤ di <

√
r, i = 1, 2, . . . , k. Note that for every divisor di of r,

r
di

is also a divisor of r. Likewise, if d is a divisor of r such that
√

r < d ≤ r,

then r
d

is also a divisor of r. Since 1 ≤ r
d

<
√

r, it follows that r
d

is one of
d1, d2, . . . , dk. Thus di,

r
di

, for i = 1, 2, . . . , k are all the distinct divisors of r.

Note that di,
r
di

are both odd, so σ(r) =
k∑

i=1

(di +
r

di

) is even. (Contradiction

as 2n + 1 is odd.) Thus r must be a perfect square.

There are two ways to complete.

(i) From (2q+1−1)σ(r) = 2n+1 = 2q+1r+1, we have 2q+1r ≡ −1 (mod 2q+1−
1) and 2q+2r ≡ −2 (mod 2q+1−1). Note that either 2q+1r or 2q+2r is a perfect
square, depending of whether q is odd or even respectively.

∀ q ≥ 1, 2q+1 − 1 ≡ 3 (mod 4), thus ∃ some prime p ≡ 3 (mod 4) dividing
2q+1−1. Note that −1 is a quadratic non-residue mod p, thus 2q+1r cannot
be a perfect square. Thus 2q+2r is a perfect square, and so q is even.

If q = 0 then we are done. Suppose q ≥ 2, then since 2q+2r ≡ −2 (mod 2q+1−
1) is a quadratic residue and −1 is a quadratic non-residue (mod 2q+1− 1).
In other words, 2 is a quadratic non-residue (mod 2q+1 − 1).



It follows that (−1)(
(2q+1−1)2−1

8
+1) = 1 ⇔ (2q+1−1)2−1

8
is odd ⇒ 22q−1 − 2q−1 is

odd. Note that 2q − 1 ≥ 1, thus 22q−1 is even so that 2q−1 is odd and so can
only be 1, which means q = 1. (Contradiction since q must be even).

As q ≥ 2, 2q+1 − 1 ≡ 7 (mod 8) so that it cannot be a power of 3. Hence
there exists a prime factor p of 2q+1 − 1 such that p ≡ 1, 5, or 7 (mod 8).

(ii) If q = 0, then we are done. If not, then from (2q+1 − 1)σ(r) = 2n + 1 =
2q+1r+1, we have 2q+1r ≡ r ≡ −1 (mod 2q+1−1). Now 2q+1−1 has a prime
factor p ≡ −1 (mod 4). Thus r ≡ −1 (mod 4). But r is a perfect square
and −1 is not a quadratic residue mod 4, a contradiction. So q = 0.

Therefore, n must be an odd perfect square.


