Training problems 10 April 2003

14. Let A be a set with 8 elements. Find the maximum number of distinct 3 -element subsets of A such that the intersection of any two of them is not a 2 -element set.
Solution. Let G be a graph with vertex set A. Two vertices are adjacent if and only if they belong to the same 3 -element subset. Thus 3 vertices that belong to the same 3 -element subset will form a 3 -cycle $\left(C_{3}\right)$. The question asks for the maximum number of $C_{3} \mathrm{~s}$ that G can contain subject to the condition that every 2 of these $C_{3} \mathrm{~s}$ do not have a common edge. (The graph may, however, contain other C_{3}. But these will share an edge with the C_{3} s we want.) We may further assume that every edge belongs to some C_{3}.

Since at most $3 C_{3}$ can share a common vertex, every vertex if od degree at most 6 . Thus G has at most $(6 \times 8) / 2=24$ edges and so at most $8 C_{3}$ s.

An example with 8 sets is:

$$
123,145,167,246,278,348,357,568 .
$$

2nd solution. This is not easier than the first but it introduces a very useful idea of an incidence matrix.

Let B_{1}, \ldots, B_{n} be 3 -element subsets of A such that $\left|B_{i} \cap B_{j}\right| \neq 2$. Form an incidence matrix with rows indexed by B_{1}, \ldots, B_{n} and with columns indexed by the elements a_{1}, \ldots, a_{8} of A. An entry $\left(B_{i}, a_{j}\right)$ is 1 if $a_{j} \in B_{i}$ and is 0 otherwise. Then there are 3 ones in every row. Call a pair of ones in the same column a 1-pair. The given condition states that there is at most 11 -pair in every pair of rows. Suppose there is a column, say column 1 , that has 4 ones, say in the first 4 rows. Then in the submatrix formed by the first 4 rows and the last 7 columns, there are 8 ones. Thus there is at least one 1-pair. Hence some pair of rows has two 1 -pairs, a contradiction.

Thus every column has at most 3 ones. Counting the total number of ones in the incidence matrix in 2 different ways, we conclude that $n \leq 8$.

It's not hard to get an example with 8 sets. Thus the answer is 8 .
15. Find all primes p for which $p\left(2^{p-1}-1\right)$ is the k th power of a positive integer for some $k>1$.

Solution. Let $p\left(2^{p-1}-1\right)=x^{k}$ for some positive integers x, k. It's clear that $p \neq 2$. Thus $p=2 q+1$. Write $x=p y$. Then $\left(2^{q}+1\right)\left(2^{q}-1\right)=p^{k-1} y^{k}$. Since at least one of $2^{q}+1$ and $2^{q}-1$ is the k th power of an integer since they are coprime.

Case (1): $2^{q}-1=z^{k}$. Then $2^{q}=z^{k}+1$. If k is even, then $z^{k}+1$ is not divisible by 4. Hence $q=1, p=3$ and $p\left(2^{p-1}-1\right)=3^{2}$.

If $k=2 \ell+1$, i.e., odd, then

$$
2^{q}=(z+1)\left(z^{2 \ell}-z^{2 \ell-1}+\cdots-z+1\right) \quad \text { i.e } \quad z+1=2^{\alpha}, 0 \leq \alpha<q .
$$

On the other hand,

$$
2^{q}=\left(2^{\alpha}-1\right)^{2 \ell+1}+1=A 2^{2 \alpha}+2^{\alpha}(2 \ell+1), \quad A \text { is an integer }
$$

The last equality contradicts with $\alpha<q$.
Case (2): $2^{q}+1=z^{k}$. Then $2^{q}=z^{k}-1$. If k is odd we get a contradiction as before.
If $k=2 \ell$, then $\left(z^{\ell}-1\right)\left(z^{\ell}+1\right)=2^{q}$ and since $\operatorname{gcd}\left(z^{\ell}-1, z^{\ell}+1\right)=2$, we have $z^{\ell}-1=2$, i.e., $q=3, p=7, p\left(2^{p-1}-1\right)=21^{2}$.

Thus the answers are $p=3,7$.
16. Let k be a given real number. Find all functions $f:(0, \infty) \rightarrow(0, \infty)$ such that the following equality holds for all positive real number x :

$$
k x^{2} f(1 / x)+f(x)=\frac{x}{x+1}
$$

Solution. Divide by x we get

$$
k x f(1 / x)+\frac{1}{x} f(x)=\frac{1}{x+1}
$$

Replace x by $1 / x$ we get

$$
\frac{k}{x} f(x)+x f(1 / x)=\frac{x}{1+x} .
$$

Solve the system of equations with unknowns $f(x)$ and $f(1 / x)$, we get

$$
\frac{\left(1-k^{2}\right) f(x)}{x}=\frac{1-k x}{x+1} .
$$

If $k \neq \pm 1$, then there is a unique solution

$$
f(x)=\frac{x}{x+1} \frac{1-k x}{1-k^{2}}
$$

It's easy to see that this expression satisfies the given functional equation.
If $k= \pm 1$, there is no solution. For $f(x)>0$ for all positive x, we also need $-1<k<$ 0 . Thus such a function exists only when $-1<k<0$. In this case the unique solution is $f(x)=\frac{x}{x+1} \frac{1-k x}{1-k^{2}}$.
17. Let n be an integer, $n \geq 3$. Let a_{1}, \ldots, a_{n} be real numbers, where $2 \leq a_{i} \leq 3$ for $i=1, \ldots, n$. if $s=a_{1}+\cdots+a_{n}$. prove that

$$
\frac{a_{1}^{2}+a_{2}^{2}-a_{3}^{2}}{a_{1}+a_{2}-a_{3}}+\frac{a_{2}^{2}+a_{3}^{2}-a_{4}^{2}}{a_{2}+a_{3}-a_{4}}+\cdots+\frac{a_{n}^{2}+a_{1}^{2}-a_{2}^{2}}{a_{n}+a_{1}-a_{2}} \leq 2 s-2 n .
$$

Solution. Write

$$
A_{i}=\frac{a_{i}^{2}+a_{i+1}^{2}-a_{i+2}^{2}}{a_{i}+a_{i+1}-a_{i+2}}=a_{i}+a_{i+1}+a_{i+2}-\frac{2 a_{i} a_{i+1}}{a_{i}+a_{i+1}-a_{i+2}} .
$$

Since $\left(a_{i}-2\right)\left(a_{i+1}-2\right) \geq 0,-2 a_{i} a_{i+1} \leq-4\left(a_{i}+a_{i+1}-2\right)$ and

$$
A_{i} \leq a_{i}+a_{i+1}+a_{i+2}-4\left(1+\frac{a_{i+2}-2}{a_{i}+a_{i+1}-a_{i+2}}\right)
$$

Since $1=2+2-3 \leq a_{i}+a_{i+1}-a_{i+2} \leq 3+3-2=4$,

$$
A_{i} \leq a_{i}+a_{i+1}+a_{i+2}-4\left(1+\frac{a_{i+2}-2}{4}\right)=a_{i}+a_{i+1}-2
$$

Hence $\sum A_{i} \leq 2 s-2 n$.
18. Two chords $U V$ and $R S$ of a circle \mathcal{C} centred at O intersect at the point N. Suppose $A B$ is a line segment outside the circle \mathcal{C} such that $A U, A V, B R$ and $B S$ are tangent to the circle \mathcal{C} at U, V, R and S respectively. Prove that $O N$ is perpendicular to $A B$.

Solution.

Join $O N$ and extend it to meet $A B$ at M. Let $O A$ intersect $U V$ at P and $O B$ intersect $R S$ at Q. Join $P Q$. Then $\angle O P N=\angle O Q N=90^{\circ}$. Hence, O, P, N and Q are concyclic. As $O P \cdot O A=O U^{2}=O S^{2}=O Q \cdot O B$, we have A, B, Q and P are concyclic. Therefore, $\angle O A M=\angle O Q P=\angle O N P$. This shows that P, A, M and N are concyclic. Hence, $\angle A M O=\angle O P N=90^{\circ}$.
(2nd solution by Colin Tan) Extend $B N$ to W such that $\angle N W S=\angle B S N(=\angle B R N)$. This is possible as $\angle B N S>\angle B R N$. Thus $B S$ is tangent to circumcircle of $S N W$ and $S W R B$ cyclic. This gives the relations $B N \cdot B W=B S^{2}=O B^{2}-O R^{2}$ and $B N \cdot N W=$ $S N \cdot N R$ so $B N^{2}=B N \cdot B W-B N \cdot N W=O B^{2}-O R^{2}-S N \cdot N R$. Get a similar expression for $A N^{2}$, and this would give $B N^{2}-A N^{2}=O B^{2}-O A^{2}$ which implies that $O N$ is perpendicular to $A B$. (Compare the proof of this with question 12. Also the same proof using projective geometry as in question 12 can be applied here.)
19. Let $A B C D$ be a cyclic quadrilateral. Prove that

$$
|A C-B D| \leq|A B-C D|
$$

When does equality hold?
Solution. Let E and F be the midpoints of the diagonals $A C$ and $B D$. In every quadrilateral the following relation due to Euler holds:

$$
A C^{2}+B D^{2}+4 E F^{2}=A B^{2}+B C^{2}+C D^{2}+D A^{2}
$$

Since $A B C D$ is a cyclic quadrilateral, we have Ptolemeus identity

$$
A B \cdot C D+A D \cdot B C=A C \cdot B D
$$

Hence,

$$
(A C-B D)^{2}+4 E F^{2}=(A B-C D)^{2}+(A D-B C)^{2}
$$

Let us prove that $4 E F^{2} \geq(A D-B C)^{2}$. This will implies the stated inequality. Let M be the midpoint of $A B$. In the triangle $M E F$, we have $A D=2 M F, B C=2 M E$, and from triangle's inequality, $E F \geq|M E-M F|$, hence $2 E F \geq|B C-A D|$ and $4 E F^{2} \geq$ $(A D-B C)^{2}$.

The equality holds if and only if the points M, E, F are collinear, which happens if and only if $A B$ is parallel to $C D$, that is $A B C D$ is either an isosceles trapezium or a rectangle.
20. Let Γ be a convex polygon with 2000 sides and P an interior point which does not lie on any diagonal of Γ. Prove that P is in the interior of an even number of triangles formed using the vertices of Γ.

Solution. First observe that if P lies in a quadrilateral, then it is contained in the interiors of two triangles. Next, if a triangle \triangle contains P, then any quadrilateral containing \triangle also contains P. As each triangle in Γ is contained in 1997 quadrilaterals, the point $P \in \triangle$ is contained in 1997 quadrilaterals. Let m be the number of quadrilaterals containing P and n the number of triangles containing P. Then $2 m=1997 n$. Hence, n must be even. Here, we are counting the number of pairs (\triangle, Q), where P lies in the triangle \triangle which is inside the quadrilateral Q.

