Singapore International Mathematical Olympiad Training Problems

8 February 2003

1. Determine whether there exist an integer polynomial $f(x)$ together with integers a, b and c satisfying the following conditions.
(i) $a c \neq b c$.
(ii) $f(a)=a, f(b)=b, c^{2}+f(c)^{2}+f(0)^{2}=2 c f(0)$.
2. Let $p(x)=x^{4}+a x^{3}+b x^{2}+c x+d$, where a, b, c, d are real constants. Suppose $p(1)=827, p(2)=1654$ and $p(3)=2481$. Find the value of $(p(9)+p(-5)) / 4$.
3. How many integer polynomials of the form $x^{3}+a x^{2}+b x+c=0$ having a, b, c as roots are there?
4. Determine whether there exist an integer polynomial $f(x)$ together with integers a, b and c satisfying the following conditions.
(i) $a c \neq b c$.
(ii) $f(a)=a, f(b)=b, c^{2}+f(c)^{2}+f(0)^{2}=2 c f(0)$.

Solution The second condition in (ii) implies that $(c-f(0))^{2}+f(c)^{2}=0$. That is $f(c)=0$ and $f(0)=c$. As f is an integer polynomial and $f(a)=a$, we have $(a-c) \mid(f(a)-f(c))$. That is $(a-c) \mid a$. Also $(a-0) \mid(f(a)-f(0))$ so that $a \mid(a-c)$. By (i), $c \neq 0$. Thus, $a-c=-a$ giving $c=2 a$. Similarly, $c=2 b$. But this gives $a=b$, contradicting (i). Therefore, no such integer polynomial exists.
2. Let $p(x)=x^{4}+a x^{3}+b x^{2}+c x+d$, where a, b, c, d are real constants. Suppose $p(1)=827, p(2)=1654$ and $p(3)=2481$. Find the value of $(p(9)+p(-5)) / 4$.

Solution Let $q(x)=p(x)-827 x$. Then $q(x)$ is a polynomial of degree 4. As $q(1)=$ $q(2)=q(3)=0$, we have $q(x)=(x-1)(x-2)(x-3)(x-r)$, for some r. Therefore, $\frac{1}{4}(p(9)+p(-5))=\frac{1}{4}(q(9)+q(-5))+827=\frac{1}{4}((8)(7)(6)(9-r)+(6)(7)(8)(5+r))=$ $1176+827=2003$.
3. How many integer polynomials of the form $x^{3}+a x^{2}+b x+c=0$ having a, b, c as roots are there?

Solution From the relation between roots and coefficients of a polynomial equation, we have

$$
\begin{array}{ll}
a+b+c & =-a \\
a b+b c+a c & =b \\
a b c & =-c \tag{3}
\end{array}
$$

From (3), $c=0$ or $a b=-1$.
Case 1. $c=0$. Substituting this into (1), we obtain $b=-2 a$. Using (2), $a b=b$. Thus, $a=1, b=-2$ or $a=b=0$.
Case 2. $c \neq 0$ and $a b=-1$. As a and b are integers, we must have $a=1, b=-1$ or $a=-1, b=1$. When $a=1, b=-1$, we get $c=-1$ using (1). These values of a, b, c also satisfy (2). When $a=-1, b=1$, we get $c=1$. But then these values of a, b, c do not satisfy (2).
Therefore, there are altogether 3 such polynomials.

