Training problems 1 April 2003

8. In a group of interpreters each one speaks one or several languages, 24 of them speak Japanese, 24 Chinese and 24 English. Prove that it is possible to select a subgroup in which exactly 12 interpreters speak Japanese, exactly 12 speak Chinese and exactly 12 speak English.
Solution: Suppose that in a group of interpreters n speak Japanese, n speak Chinese and n speak English. Denote these groups by A, B, C. Put $p=\left|A \cap B^{c} \cap C^{c}\right|, q=\left|A^{c} \cap B \cap C^{c}\right|$, $r=\left|A^{c} \cap B^{c} \cap C\right|, a=\left|A^{c} \cap B \cap C\right|, b=\left|A \cap B^{c} \cap C\right|, c=\left|A \cap B \cap C^{c}\right|, d=|A \cap B \cap C|$.

A group of interpreters is called a k-group if exactly k interpreters speak Japanese, exactly k speak Chinese and exactly k speak English.

We shall prove by induction on n, that for $n \geq 2$, it's possible to find a 2 -group inside an n-group.

When $n=2$, it's trivially true. Now suppose $n>2$ is an integer and that for each k, $2 \leq k<n$, the result is true.

1. $a, b, c>0$: It's enough to select one interpreter from each of the sets:

$$
A^{c} \cap B \cap C, \quad A \cap B^{c} \cap C, \quad A \cap B \cap C^{c} .
$$

2. $p, q, r>0$: Select one from each of the sets:

$$
A^{c} \cap B^{c} \cap C, \quad A^{c} \cap B \cap C^{c}, \quad A \cap B^{c} \cap C^{c}
$$

and then apply induction on the remaining people.
3. $d>0$: It's enough to select one from $A \cap B \cap C$ apply the induction hypothesis to the remaining group.
4. None of the above hold: One of a, b, c is 0 , say $a=0 ; d=0$ and one of p, q, r is 0 . We have $q+c=b+r=p+b+c=n$. If $q=0$, then $c=r=n$ and $p=b=0$. Thus $c>0, r>0$. We can choose one from each of $A \cap B \cap C^{c}, \quad A^{c} \cap B^{c} \cap C$ and then apply the induction hypothesis. The case $r=0$ is similar. The final case if $p=0$ and $r, q>0$. Then since $b+c=n$, one of them is positive, say $b>0$. Then choose one from each of $A \cap B^{c} \cap C, \quad A^{c} \cap B \cap C^{c}$ and then apply the induction hypothesis.

Thus from $n=24$, we can choose k as long as k is an even number less than 24.
Solution: 2nd soln by Colin. Let L_{1}, L_{2}, L_{3} be the three languages. Divide the interpreter into 7 groups $S\left(l_{1}, l_{2}, l_{3}\right)$ where $l_{i}=1$ if the people from the group speak L_{i} and $l_{i}=0$ otherwise. Let a_{1}, \ldots, a_{7} be,respectively, the number of people in the $S(1,0,0), S(0,1,0)$, $S(0,0,1), S(0,1,1), S(1,0,1), S(1,1,0), S(1,1,1)$.

We shall prove that for any $n \geq 2$, it's possible to find a 2 -group inside an n-group.
We have 3 equations by considering the interpreters who can speak each of the languages in turn.

$$
\begin{aligned}
& a_{1}+a_{5}+a_{6}+a_{7}=n \\
& a_{2}+a_{4}+a_{6}+a_{7}=n \\
& a_{3}+a_{4}+a_{6}+a_{7}=n
\end{aligned}
$$

Without loss of generality, we can assume that $a_{1} \leq a_{2} \leq a_{3}$. The solutions are of the form

$$
\left(a_{1}, \ldots, a_{7}\right)=(a, a+b, a+c, d, d+b, d+c, n-(a+b+c+2 d))
$$

for (independent) nonnegative integers a, b, c, d.
The set $\{S(1,0,0), S(0,1,0), S(0,0,1)\}$ gives a 1 -groups. The set $\{S(0,1,0), S(1,0,1)\}$ gives $b 1$-groups. The set $\{S(0,0,1), S(1,1,0)\}$ gives $c 1$-groups. The set $S(1,1,1)$ gives $24-(a+b+c+2 d) 1$-groups. The set $\{S(0,1,1), S(1,0,1), S(1,1,0)\}$ gives $d 2$-groups.

If $(a)+(b)+(c)+(24-(a+b+c+2 d))=n-2 d \geq 2$, then there are 21 -groups which will combine to give a 2 -group. Otherwise, $n-2 d \leq 1$, or $2 d \geq n-1$ or $d \geq 1$. We still have a 2 -group.

Apply this result to the case $n=24$, we have a 2 -group. Remove this 2 -group, we are left with the case with $n=22$. Continuing this way, we can find 6 distinct 2 -groups and they combine to give a 12 -group as desired.
9. Points P_{1}, \ldots, P_{n} are placed inside or on the boundary of a disk of radius 1 in such a way that the minimum distance d_{n} between any two of these points has its largest possible value D_{n}. Calculate D_{n} for $n=2, \ldots, 7$. Justify your answers.

Solution: Suppose $n \leq 6$. Decompose the disk by its radii into n congruent regions so that one of the points is on one of the radii. Then there is one region (including its boundary) which contains 2 of the points. Since the distance between any two points in a region is at most $2 \sin \pi / n$, then $d_{n} \leq 2 \sin \pi / n$. If points P_{j} are placed in the vertices of regular n-gon inscribed in the boundary of the disk, then $d_{n}=2 \sin \pi / n$. Therefore $D_{n}=2 \sin \pi / n$.

For $n=7$, we have $D_{7} \leq D_{6}=1$. If one of the given points is placed in the center of the disk and if the other 6 points are placed at the vertices of the regular hexagon inscribed in the boundary of the disk, then $d_{7}=1$. Thus $D_{7}=1$.
10. Prove that in any triangle, a line passing through the incentre cuts the perimeter of the triangle in half if and only if it halves the area of the triangle.

Solution: Let $A B C$ be the triangle and O, r denote t he incentre and inradius. Let l be a line passing through O. It intersects one side, say $B C$, at an interior point. Without loss of generality, let it intersect the side $A C$ at P. (Note that P may coincide with A.) Let $x=P C, y=Q C$. For a triangle $X Y Z$, denote its area by $[X Y Z]$. Then

$$
[A B C]=\frac{r(a+b+c)}{2}, \quad[C P Q]=\frac{r(x+y)}{2}
$$

the latter because the altitudes of $\triangle O C P, \triangle O C Q$ from O are both r. The line l halves the area iff

$$
a+b+c=2(x+y)
$$

iff l halves the perimeter.
11. Nine positive integers $a_{1}<a_{2}<\cdots<a_{9}$ are such that all the sums (of at least one and at most nine different terms) that can be made up of them are different. Prove that $a_{9}>100$.

Solution: Assume that $a_{9} \leq 100$. Let S be the set of those sums $\geq a_{4}$ of at most 5 terms out of a_{1}, \ldots, a_{8}. The number of sums of at most 5 terms is $\binom{8}{1}+\cdots+\binom{8}{5}=218$. Those
that can be less than a_{4} are made up of a_{1}, a_{2}, a_{3} and there are at most 7 of them. Thus $|S| \geq 211$. The greatest sum in S is $a_{4}+\cdots+a_{8}<a_{4}+4 a_{9}$ and therefore all the sums are in $\left[a_{4}, a_{4}+4 a_{9}\right]$. The inequality $|S| \geq 2 a_{9}$ implies that there are 3 numbers which are congruent mod a_{9}. Thus 2 of them must have a difference of a_{9}, a contradiction.
12. The quadrilateral $A B C D$ inscribes in a circle with centre O. Let $B A$ meet $C D$ at P, $A D$ meet $B C$ at Q and $A C$ meet $B D$ at M. Show that O is the orthocentre of triangle $P Q M$.

Solution: Let R be the radius of the circle. As $\angle Q M D>\angle C B D=\angle D A M$, one can extend $Q M$ to $Q F$ such that $\angle F A D=\angle Q M D$. Then A, D, M, F are concyclic. Also $\angle Q B D=\angle D A M=\angle D F M$ so that B, F, D, Q are concyclic.

Thus, $Q M \cdot Q F=Q D \cdot Q A=Q O^{2}-R^{2}$, and $Q M \cdot M F=M B \cdot M D=R^{2}-M O^{2}$. Subtracting, we get $Q M(Q F-M F)=Q O^{2}+M O^{2}-2 R^{2}$. That is $Q M^{2}=Q O^{2}+M O^{2}-$ $2 R^{2}$ Similarly, $P M^{2}=P O^{2}+M O^{2}-2 R^{2}$. Subtracting again, we have $P M^{2}-Q M^{2}=$ $P O^{2}-Q O^{2}$.

It follows from this that $O M$ is perpendicular to $P Q$. To see this, suppose the extension of $O M$ meets $P Q$ at E and $\angle P E M>\angle Q E M$. By cosine rule, $P M^{2}=E P^{2}+M E^{2}-$ $2 E P \cdot M E \cos \angle P E M>E P^{2}+M E^{2}$. Similarly, $P O^{2}>E P^{2}+O E^{2}, Q M^{2}<E Q^{2}+M E^{2}$ and $Q O^{2}<E Q^{2}+O E^{2}$. Subtracting, we obtain $P M^{2}-Q M^{2}>E P^{2}-E Q^{2}>P O^{2}-Q O^{2}$, a contradiction.

Similarly, $P M$ is perpendicular to $O Q$ and $Q M$ is perpendicular to $O P$. Therefore, O is the orthocentre of triangle $P Q M$.
(Alternate Solution) Let $O M$ meet $P Q$ at W. From W draw tangents to the circle touching it at H and G Then H, M, G are collinear as M is the pole of $P Q$. Let $H G$ meet $P Q$ at Z. Then the cross ratio $(H, G ; M, Z)=-1$. Since $W M$ bisects $\angle H W G$, we have $O W$ or $M W$ is perpendicular to $P Q$.
13. Suppose $a_{1}, a_{2}, \cdots, a_{n}$ are $n \geq 3$ positive numbers such that $\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)^{2}>$ $(n-1)\left(a_{1}^{4}+a_{2}^{4}+\cdots+a_{n}^{4}\right)$. Prove that any three such $a_{i}^{\prime} s$ form the lengths of the sides of a triangle.

Solution: First we prove the assertion when $n=3$. Let's write the numbers as a, b, c. They satisfy the inequality : $\left(a^{2}+b^{2}+c^{2}\right)^{2}>2\left(a^{4}+b^{4}+c^{4}\right)$. We may assume without
loss of generality that $a \geq b \geq c$. Then

$$
0 \leq\left(a^{2}+b^{2}+c^{2}\right)^{2}-2\left(a^{4}+b^{4}+c^{4}\right)=-\left[a^{2}-(b+c)^{2}\right]\left[a^{2}-(b-c)^{2}\right]
$$

Thus, $|b-c|<a<|b+c|$. Therefore, a, b, c are the lengths of the sides of a triangle.
In the general case, we can simply show that a_{1}, a_{2}, a_{3} are the lengths of the sides of a triangle. Using Cauchy-Schwarz inequality, we have $(n-1)\left(a_{1}^{4}+a_{2}^{4}+\cdots+a_{n}^{4}\right) \leq$ $\left(1 \cdot \frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}{2}+1 \cdot \frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}{2}+1 \cdot a_{4}^{2}+\cdots+1 \cdot a_{n}^{2}\right)^{2} \leq(n-1)\left[2\left(\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}{2}\right)^{2} a_{4}^{4}+\cdots+a_{n}^{4}\right]$. From this, we get $\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)^{2}>2\left(a_{1}^{4}+a_{2}^{4}+a_{3}^{4}\right)$. Using the case for $n=3, a_{1}, a_{2}, a_{3}$ are the lengths of the sides of a triangle.

