
Training problems 1 April 2003

8. In a group of interpreters each one speaks one or several languages, 24 of them speak
Japanese, 24 Chinese and 24 English. Prove that it is possible to select a subgroup in
which exactly 12 interpreters speak Japanese, exactly 12 speak Chinese and exactly 12
speak English.

Solution: Suppose that in a group of interpreters n speak Japanese, n speak Chinese and
n speak English. Denote these groups by A,B, C. Put p = |A∩Bc∩Cc|, q = |Ac∩B∩Cc|,
r = |Ac ∩Bc ∩C|, a = |Ac ∩B ∩C|, b = |A ∩Bc ∩C|, c = |A ∩B ∩Cc|, d = |A ∩B ∩C|.

A group of interpreters is called a k-group if exactly k interpreters speak Japanese,
exactly k speak Chinese and exactly k speak English.

We shall prove by induction on n, that for n ≥ 2, it’s possible to find a 2-group inside
an n-group.

When n = 2, it’s trivially true. Now suppose n > 2 is an integer and that for each k,
2 ≤ k < n, the result is true.

1. a, b, c > 0: It’s enough to select one interpreter from each of the sets:

Ac ∩B ∩ C, A ∩Bc ∩ C, A ∩B ∩ Cc.

2. p, q, r > 0: Select one from each of the sets:

Ac ∩Bc ∩ C, Ac ∩B ∩ Cc, A ∩Bc ∩ Cc

and then apply induction on the remaining people.

3. d > 0: It’s enough to select one from A ∩B ∩C apply the induction hypothesis to
the remaining group.

4. None of the above hold: One of a, b, c is 0, say a = 0; d = 0 and one of p, q, r is 0.
We have q + c = b + r = p + b + c = n. If q = 0, then c = r = n and p = b = 0. Thus
c > 0, r > 0. We can choose one from each of A ∩ B ∩ Cc, Ac ∩ Bc ∩ C and then apply
the induction hypothesis. The case r = 0 is similar. The final case if p = 0 and r, q > 0.
Then since b + c = n, one of them is positive, say b > 0. Then choose one from each of
A ∩Bc ∩ C, Ac ∩B ∩ Cc and then apply the induction hypothesis.

Thus from n = 24, we can choose k as long as k is an even number less than 24.

Solution: 2nd soln by Colin. Let L1, L2, L3 be the three languages. Divide the interpreter
into 7 groups S(l1, l2, l3) where li = 1 if the people from the group speak Li and li = 0
otherwise. Let a1, . . . , a7 be,respectively, the number of people in the S(1, 0, 0), S(0, 1, 0),
S(0, 0, 1), S(0, 1, 1), S(1, 0, 1), S(1, 1, 0), S(1, 1, 1).

We shall prove that for any n ≥ 2, it’s possible to find a 2-group inside an n-group.

We have 3 equations by considering the interpreters who can speak each of the lan-
guages in turn.

a1 + a5 + a6 + a7 = n

a2 + a4 + a6 + a7 = n

a3 + a4 + a6 + a7 = n
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Without loss of generality, we can assume that a1 ≤ a2 ≤ a3. The solutions are of the
form

(a1, . . . , a7) = (a, a + b, a + c, d, d + b, d + c, n− (a + b + c + 2d))

for (independent) nonnegative integers a, b, c, d.

The set {S(1, 0, 0), S(0, 1, 0), S(0, 0, 1)} gives a 1-groups. The set {S(0, 1, 0), S(1, 0, 1)}
gives b 1-groups. The set {S(0, 0, 1), S(1, 1, 0)} gives c 1-groups. The set S(1, 1, 1) gives
24− (a + b + c + 2d) 1-groups. The set {S(0, 1, 1), S(1, 0, 1), S(1, 1, 0)} gives d 2-groups.

If (a) + (b) + (c) + (24 − (a + b + c + 2d)) = n − 2d ≥ 2, then there are 2 1-groups
which will combine to give a 2-group. Otherwise, n− 2d ≤ 1, or 2d ≥ n− 1 or d ≥ 1. We
still have a 2-group.

Apply this result to the case n = 24, we have a 2-group. Remove this 2-group, we are
left with the case with n = 22. Continuing this way, we can find 6 distinct 2-groups and
they combine to give a 12-group as desired.

9. Points P1, . . . , Pn are placed inside or on the boundary of a disk of radius 1 in such a
way that the minimum distance dn between any two of these points has its largest possible
value Dn. Calculate Dn for n = 2, . . . , 7. Justify your answers.

Solution: Suppose n ≤ 6. Decompose the disk by its radii into n congruent regions so that
one of the points is on one of the radii. Then there is one region (including its boundary)
which contains 2 of the points. Since the distance between any two points in a region is at
most 2 sinπ/n, then dn ≤ 2 sinπ/n. If points Pj are placed in the vertices of regular n-gon
inscribed in the boundary of the disk, then dn = 2 sin π/n. Therefore Dn = 2 sin π/n.

For n = 7, we have D7 ≤ D6 = 1. If one of the given points is placed in the center of
the disk and if the other 6 points are placed at the vertices of the regular hexagon inscribed
in the boundary of the disk, then d7 = 1. Thus D7 = 1.

10. Prove that in any triangle, a line passing through the incentre cuts the perimeter of
the triangle in half if and only if it halves the area of the triangle.

Solution: Let ABC be the triangle and O, r denote t he incentre and inradius. Let l be a
line passing through O. It intersects one side, say BC, at an interior point. Without loss
of generality, let it intersect the side AC at P . (Note that P may coincide with A.) Let
x = PC, y = QC. For a triangle XY Z, denote its area by [XY Z]. Then

[ABC] =
r(a + b + c)

2
, [CPQ] =

r(x + y)
2

the latter because the altitudes of 4OCP,4OCQ from O are both r. The line l halves
the area iff

a + b + c = 2(x + y)

iff l halves the perimeter.

11. Nine positive integers a1 < a2 < · · · < a9 are such that all the sums (of at least one
and at most nine different terms) that can be made up of them are different. Prove that
a9 > 100.

Solution: Assume that a9 ≤ 100. Let S be the set of those sums ≥ a4 of at most 5 terms
out of a1, . . . , a8. The number of sums of at most 5 terms is

(
8
1

)
+ · · ·+

(
8
5

)
= 218. Those
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that can be less than a4 are made up of a1, a2, a3 and there are at most 7 of them. Thus
|S| ≥ 211. The greatest sum in S is a4 + · · · + a8 < a4 + 4a9 and therefore all the sums
are in [a4, a4 + 4a9]. The inequality |S| ≥ 2a9 implies that there are 3 numbers which are
congruent mod a9. Thus 2 of them must have a difference of a9, a contradiction.

12. The quadrilateral ABCD inscribes in a circle with centre O. Let BA meet CD at P ,
AD meet BC at Q and AC meet BD at M . Show that O is the orthocentre of triangle
PQM .

Solution: Let R be the radius of the circle. As ∠QMD > ∠CBD = ∠DAM , one can
extend QM to QF such that ∠FAD = ∠QMD. Then A,D,M,F are concyclic. Also
∠QBD = ∠DAM = ∠DFM so that B,F,D,Q are concyclic.
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Thus, QM ·QF = QD ·QA = QO2 −R2, and QM ·MF = MB ·MD = R2 −MO2.
Subtracting, we get QM(QF −MF ) = QO2 +MO2−2R2. That is QM2 = QO2 +MO2−
2R2 Similarly, PM2 = PO2 + MO2 − 2R2. Subtracting again, we have PM2 − QM2 =
PO2 −QO2.

It follows from this that OM is perpendicular to PQ. To see this, suppose the exten-
sion of OM meets PQ at E and ∠PEM > ∠QEM . By cosine rule, PM2 = EP 2+ME2−
2EP ·ME cos ∠PEM > EP 2 +ME2. Similarly, PO2 > EP 2 +OE2, QM2 < EQ2 +ME2

and QO2 < EQ2+OE2. Subtracting, we obtain PM2−QM2 > EP 2−EQ2 > PO2−QO2,
a contradiction.

Similarly, PM is perpendicular to OQ and QM is perpendicular to OP . Therefore,
O is the orthocentre of triangle PQM .

(Alternate Solution) Let OM meet PQ at W . From W draw tangents to the circle touching
it at H and G Then H,M,G are collinear as M is the pole of PQ. Let HG meet PQ at
Z. Then the cross ratio (H,G;M,Z) = −1. Since WM bisects ∠HWG, we have OW or
MW is perpendicular to PQ.

13. Suppose a1, a2, · · · , an are n ≥ 3 positive numbers such that (a2
1 + a2

2 + · · · + a2
n)2 >

(n− 1)(a4
1 + a4

2 + · · ·+ a4
n). Prove that any three such a′

is form the lengths of the sides of
a triangle.

Solution: First we prove the assertion when n = 3. Let’s write the numbers as a, b, c.
They satisfy the inequality : (a2 + b2 + c2)2 > 2(a4 + b4 + c4). We may assume without
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loss of generality that a ≥ b ≥ c. Then

0 ≤ (a2 + b2 + c2)2 − 2(a4 + b4 + c4) = −[a2 − (b + c)2][a2 − (b− c)2].

Thus, |b− c| < a < |b + c|. Therefore, a, b, c are the lengths of the sides of a triangle.

In the general case, we can simply show that a1, a2, a3 are the lengths of the sides
of a triangle. Using Cauchy-Schwarz inequality, we have (n − 1)(a4

1 + a4
2 + · · · + a4

n) ≤(
1 · a2

1+a2
2+a2

3
2 + 1 · a2

1+a2
2+a2

3
2 + 1 · a2

4 + · · ·+ 1 · a2
n

)2

≤ (n−1)
[
2

(
a2
1+a2

2+a2
3

2

)2

a4
4 + · · ·+ a4

n

]
.

From this, we get (a2
1 + a2

2 + a2
3)

2 > 2(a4
1 + a4

2 + a4
3). Using the case for n = 3, a1, a2, a3

are the lengths of the sides of a triangle.
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