1. Clearly,

= =

878787878787 = 87 x 10101010101 and 78787878787878 = 78 x 10101010101.

Since gcd(87, 78) = 3, the gcd of the two given numbers is 30303030303. Thus the correct answer is (e).

- 2. Let A = 10^{m} -1 and B = 10^{n} -1. Then AB = 10^{m+n} $(10^{m} + 10^{n})$ + 1. Since $10^{m} + 10^{n}$ is of the form $10 \dots 010 \dots 0$, AB = $(10^{m+n} + 1) - (10^{m} + 10^{n})$ is of the form 9 . . . 989 . . . 90 . . . 01. So the answer is (b). Note that the result is also true if m = n.
- (d) is false, for let a = 8, b = 4. Then $64 = a^2 \mid b^3 = 64$. However, $a \neq b$. 3.
- 4. The required number of zeros is exactly equal to the highest power of 5 in 100!. Hence the answer is:

$$\left[\frac{1000}{5}\right] + \left[\frac{1000}{25}\right] + \left[\frac{1000}{125}\right] + \left[\frac{1000}{625}\right]$$

200 + 40 + 8 + 1
249.

The correct answer is (d).

5. A positive integer n is relatively prime to 12 if and only if it is not divisible by 2 or 3. The probability that n is divisible 2, 3 or 6 is $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{6}$ respectively. Hence

the required probability is

 $1 - \frac{1}{2} - \frac{1}{3} + \frac{1}{6} = \frac{1}{3}$

The correct answer is (d).

6. We have equilateral triangles of 5 increasing sizes (say, sizes 1, 2, 3, 4, 5 respectively). The numbers of triangles of sizes 1, 2, 3, 4, 5 are respectively:

25, 13, 6, 3 and 1. Hence the required number is

25 + 13 + 6 + 3 + 1 = 48.

The correct answer is (b).

There are altogether 6 matches. The total number of points is thus 12. Let the 7. points awarded to Singapore, Malaysia, Thailand and Indonesia be S, M, T, I respectively. Then S + M + T + I = 12, with S, M, T, I all distinct, S, I even and M, T odd. So the only possibilities are: 12 = 0 + 3 + 4 + 5 and 12 = 0 + 1 + 5 + 6. The second case is impossible; for if every team beat Indonesia, then S, M, T ≥ 2 . Hence we must have the first case, from which we conclude that S = 4, (2nd place). Thus the correct answer is (c).

8. We have
$$= \int_{0}^{1} (x - \frac{1}{2})^{3} f(x) dx$$
$$= \int_{0}^{1} x^{3} f(x) dx - \frac{3}{2} \int_{0}^{1} x^{2} f(x) dx + \frac{3}{4} \int_{0}^{1} x f(x) dx - \frac{1}{8} \int_{0}^{1} f(x) dx$$
$$= 1.$$

If M < 32, then

$$1 = \int_{0}^{4} (x - \frac{1}{2})^{3} f(x) dx < 32 \int_{0}^{1} |x - \frac{1}{2}|^{3} dx = 1, \text{ a contradiction.}$$

Hence we conclude that $M \ge 32$. The correct answer is (e).

- 9. The hour-hand moves through θ° , taking $\frac{12\theta}{360}$ hrs. The minute-hand moves through $360^{\circ} + \theta^{\circ}$, taking $\frac{360 + \theta}{60 \times 60}$ hrs. We have: $\frac{12\theta}{360} = \frac{360 + \theta}{60 \times 60}$. Hence $12\theta = 360 + \theta$ Therefore $\theta = \frac{360}{11} = 32\frac{8}{11} > 32\frac{1}{2}$. The correct answer is (a).
- Let the number of socks of each colour be n. Then the number of ways of choosing three socks is (³ⁿ₃). The number of ways of choosing three socks of different colours is (ⁿ₁)³. Hence the required probability is

p = 1 -
$$\binom{n}{1}^{3} / \binom{3n}{3}$$

= 1 - $n^{3} \frac{1 \cdot 2 \cdot 3}{3n(3n-1)(3n-2)}$
= 1 - $\frac{2}{(3-\frac{1}{n})(3-\frac{2}{n})}$
= $\frac{7}{9}$, as n → ∞.

The correct answer is (d).

1. M_2 is expressible in the form $m_2 = mq_2 + 1$ where q_2 is an integer. In fact $q_2 = m - 1$. Also if for any k, $m_k = mq_k + 1$ where q_k is an integer, then

$$m_{k+1} = m_k^2 - m_k + 1$$

= m(mq_k^2 + q_k) + 1
= mq_{k+1} + 1

where $q_{k+1} = mq_k^2 + q_k$ is an integer.

It follows by mathematical induction that for every i > 1, $m_i = mq_i + 1$ whence m, is not divisible by m.

2. Let f be in p such that f(g(x)) = g(f(x)) for each g in p. Let g(x) = x + h, where h \neq 0. Observe that f(g(x)) = f(x + h) and g(f(x)) = f(x) + h. Thus f(x + h) = f(x) + h, i.e.,

$$\frac{f(x+h)-f(x)}{h} = 1.$$

Hence $\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = 1$

f(x) = x + c where c is a constant. and so

Now let g = 0. Then g(f(x)) = 0 and f(g(x)) = 0 + c, which imply that c = 0. We thus conclude that f(x) = x.

It is easily seen that f(x) = x satisfies f(g(x)) = g(f(x)) for all g in p.

Hence { $f \in p \mid f(g(x)) = g(f(x))$ for all $g \in p$ } = { | } where I(x) = x.

- 3. Let $S_n = (1 + \frac{1}{1!}) + (\frac{1}{2} + \frac{1}{2!}) + \ldots + (\frac{1}{n} + \frac{1}{n!})$. Then $(n 1)! S_n = k + \frac{(n 1)! + 1}{n!}$ for some integer k. If n divides (n - 1)! + 1, take any prime division p of n. Then $p \le n - 1$, and so p divides (n - 1)!. But then p | 1, which is impossible. Hence ((n - 1)! + 1)/n is not an integer, and thus S_n is not an integer.
- 4. For $k \ge m + 2$, we have

$$0 < \frac{n}{2^{k}} + \frac{1}{2} = a_{m} 2^{m-k} + a_{m-1} 2^{m-k-1} + \ldots + a_{0} 2^{-k} + \frac{1}{2}$$

$$\leq 2^{m-k} + 2^{m-k-1} + \ldots + 2^{-k} + \frac{1}{2}$$

$$\leq 2^{-2} + 2^{-3} + \ldots + 2^{-k} + \frac{1}{2}$$

$$< 1.$$

. Observe that

Hence
$$\left[\frac{n}{2^{k}} + \frac{1}{2}\right] = 0.$$

It is easy to see that

$$\begin{aligned} \frac{1}{2} + \frac{n}{2^k} &= \frac{1}{2} + \frac{a_m}{2} + \dots + \frac{a_0}{2^m} \\ \text{and so} \left[\frac{1}{2} + \frac{n}{2^k} \right] &= \begin{cases} 0 & \text{if } a_m = 0 \\ 1 & \text{if } a_m = 1, \text{ i.e. } \left[\frac{1}{2} + \frac{n}{2^k} \right] = a_m. \end{aligned}$$
We shall next show that
$$\begin{aligned} \left[\frac{1}{2} + \frac{n}{2^k} \right] &= a_m 2^{m-k} + \dots + a_k + a_{k-1} \text{ for } k \leq m. \end{aligned}$$
Observe that
$$\begin{aligned} \frac{n}{2^k} + \frac{1}{2} &= (a_m 2^{m-k} + \dots + a_k) + (\frac{a_{k-1}}{2} + \frac{a_{k-2}}{2^2} + \dots + \frac{a_0}{2^k} + \frac{1}{2}) \end{aligned}$$
Since
$$\begin{aligned} \frac{1}{2} &\leq \frac{a_{k-1}}{2} + \frac{a_{k-2}}{2^2} + \dots + \frac{a_0}{2^k} + \frac{1}{2} \end{aligned}$$

$$\begin{aligned} &\leq \frac{a_{k-1}}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{a_0}{2^k} + \frac{1}{2} \end{aligned}$$
We have
$$\begin{aligned} \left[\frac{a_{k-1}}{2} + \frac{a_{k-2}}{2^2} + \dots + \frac{a_0}{2^k} + \frac{1}{2} \right] = \begin{cases} 0 & \text{if } a_{k-1} = 0 \\ 1 & \text{if } a_{k-1} = 1 \end{aligned}$$
We have
$$\begin{aligned} \left[\frac{a_{k-1}}{2} + \frac{a_{k-2}}{2^2} + \dots + \frac{a_0}{2^k} + \frac{1}{2} \right] = \begin{cases} 0 & \text{if } a_{k-1} = 0 \\ 1 & \text{if } a_{k-1} = 1 \end{aligned}$$
Thus
$$\begin{aligned} \left[\frac{1}{2} + \frac{n}{2^k} \right] = a_m 2^{m-k} + \dots + a_k + a_{k-1} & \text{if } k \leq m. \end{aligned}$$
Finally
$$\begin{aligned} \sum_{k=1}^n \left[\frac{n}{2^k} + \frac{1}{2} \right] \\ &= a_m + (a_m + a_{m-1}) + (a_m 2 + a_{m-1} + a_{m-2}) + (a_m 2^2 + a_{m-1} 2 + a_{m-2} + a_{m-2} + a_{m-3}) + \dots + (a_m 2^{m-1} + \dots + a_1) \end{aligned}$$

$$&= a_m (1 + 1 + 2 + 2^2 + \dots + 2^{m-1}) + a_{m-1} (1 + 1 + 2 + 2^2 + \dots + 2^{m-2}) + \dots + a_0 \end{aligned}$$

$$&= a_m 2^m + a_{m-1} 2^{m-1} + \dots + a_0 \end{aligned}$$

5. Observe that

$$X_{n} = 2^{E_{n-1}} - 2^{E_{n-2}}$$

= $2^{E_{n-2}} \left\{ 2^{(E_{n-1} - E_{n-2})} - 1 \right\}$
= $2^{E_{n-2}} \left(2^{X_{n-1}} - 1 \right)$

Thus

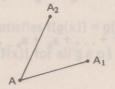
 $\frac{X_n}{X_{n-1}} = 2^{X_{n-2}} \left(\frac{2^{X_{n-1}} - 1}{2^{X_{n-2}} - 1} \right)$

But if a/b then $(2^a - 1)/(2^b - 1)$.

This gives an easy proof of the result by induction. (Note that the result is true for n = 3)

6. Suppose on the contrary that a closed polygon A_1, A_2, \ldots, A_k $(A_1 = A_{k+1})$ is formed. Then for each i = 1, 2, ..., k, either A_i is the closest neighbour of A_{i+1} or A_{i+1} is the closest neighbour of A_i . Without loss of generality, one can assume that A_1 is the closest neighbour of A_2 . Then $A_1A_2 < A_2A_3$. So A_2 is the closest neighbour of A_3 and $A_2A_3 < A_3A_4$. Continuning this process, we get: A_i is the closest neighbour of A_{i+1} for each i = 1, 2, ..., k, and $A_1A_2 < A_2A_3 < \ldots < A_kA_1 < A_1A_2$, which is impossible. Therefore there is no closed polygon.

Consider



Suppose A is the closest neighbour of both A₁ and A₂. Then A₁ A₂ > A₁ A and A₁ A₂ > A₂ A.

Suppose A is the closest neighbour of only one of A_1 and A_2 , say A_1 . Then A_2 is the closest neighbour of A and we have

 $AA_2 < AA_1 < A_1A_2$.

Hence $\angle A^1 A A^2 > 60^\circ$. Therefore A can be joined to at must 5 other points.