SOLUTIONS TO PART A

- 1. We have $(13)^{62} = (169) (169^{30}) = (169) [(169)^2]^{15}$. The unit digit of $(169)^2$ is 1 and so the unit digit of $(169^2)^{15}$ is also 1. Hence the unit digit of $(13)^{62}$ is 9. Hence the correct answer is (d).
- 2. As $\log_{10} x + \log_{10} y = 2$, we have $\log xy = \log 100$. Hence xy = 100. Thus 1/(xy) = 1/100. Now $1/x + 1/y \ge 2\sqrt{(1/xy)} = 1/5$. However, when x = y = 10, 1/x + 1/y = 1/5. Hence the minimum value of 1/x + 1/y is 1/5. The correct answer is therefore (d).

3. We have
$$f(f(x)) = [a(ax/(bx + 1))] / [b(ax/(bx + 1)) + 1]$$

= $a^2 x/(abx + bx + 1)$
= $a^2 x/((ab + b)x + 1)$.

Hence if f(f(x)) = x, we have ab + b = 0 and $a^2 = 1$. From this we see that one feasible solution is a = -1 and b can be arbitrary. So the correct answer is (c).

4. Only the seven digits 0, 1, 2, 4, 6, 8 and 9 can be used to form positive integers less than 10,000. Thus there are 7^3 such integers ending with 1, 2, 4, 6, 8 and 9 respectively. Hence the sum of the unit digits of all these integers is equal to $7^3 (1+2+4+6+8+9) = 10290$. Similarly, the sums of the tenth digits, hundredth digits, and thousandth digits of these integers are respectively equal to 10290 x 10, 10290 x 100 and 10290 x 1000. Hence the required sum is equal to

10290 (1 + 10 + 100 + 1000) = 11432190. The correct answer is thus (a).

5. Extent BD to intersect the circle at E and also extend OD is both directions, intersecting the circle at F and G as shown in the following figure.

We then have $(BC)(BE) = (AB)^2$ from which we get 4(DE + BD) = 64 and so 4(DE + 8) = 64. Hence DE = 8. Also, (DE)(DC) = (DF)(DG). Thus, $8 \times 4 = (r - 3)(r + 3)$ where r is the radius of the circle, from which we get $r^2 = 41$. Hence the correct answer is (e).

6. From the figure below, we see that:

S(AOC)/S(ABC) = AF/AB since FK and AC are parallel, where S(XYZ) denotes the area of ΔXYZ . Similarly, S(AOB)/S(ABC) = BE/BC and S(COB)/S(ABC) =CN/CA. From these, it is clear that AF/AB + BE/BC + CN/CA = 1. So the correct answer is (e).

- 7. Let $x = {}^{4}\sqrt{(3 + \sqrt{3} + \sqrt{2})}$. Then $x^{4} = 3 + \sqrt{(3 + \sqrt{2})}$. Therefore $(x^{4} 3)^{2} = 3 + \sqrt{2}$, i.e. $x^{8} 6x^{4} + 9 = 3 + \sqrt{2}$. Hence $(x^{8} 6x^{4} + 6)^{2} = 2$. The correct answer is therefore (e).
- 8. Note that if $3 < x^3$ and $x^5 < 6$, then $3^5 < x^{15} < 6^3$. Hence we would have 243 < 216, a contradiction. So the system has no solution for $n \ge 5$. For n = 4, x = 1.45 is a solution to the system. So the correct answer is (c).
- 9. The number of integers from 1000 to 1000000 is 999001. Among these 969 are squares of integers (namely 32², 33², ..., 1000²), 91 are cubes of integers (namely 10³, 11³, ..., 100³) and 7 are sixth powers of integers (namely: 4⁶, 5⁶, ..., 10⁶). Hence the number of integers which are neither squares nor cubes of integers is 999001 969 91 + 7 = 997948. So the correct answer is (d).
- 10. Let P(w), P(b) and P(r) be the probabilities that the ball drawn is white, black and red respectively. By symmetry, P(w) = P(b) = P(r). Also P(w) + P(b) + P(r) = 1. From these we conclude that P(r) = 1/3. Hence the correct answer is (b).

We then have (BC)(BE) = (AB)² from which we get 4(DE + BD) = 64 and a 4 (DE + 8) > 84. Hence DE = 8. Also, (DE)(DC) = (DF)(DG). Thus, 8 x 4 (c - 3)(c + 3) where c is the radius of the circle, from which we get $c^2 = 4$ Hence the correct answer is (e).

SOLUTIONS TO PART B

 Let Ai , Bi and Ci (i = 1, 2, 3) be the ith statements made by Grace, Helen and Mary respectively. The following combination of two statements made by each of the three ladies is consistent.: A2 , A3 ; B1 , B2 ; and C1 , C2. This combination leads to the conclusion that Grace is 23, Mary 22 and Helen 25 years old. All other combinations led to a contradiction. For example, the combination: A1 , A2 , B1 , B2 , and C1 , C3 leads to the contradictory conclusions that Helen is both 24 and 25 years old.

2. We have: $(n!)^2 = n \times (n-1) \times (n-2) \times ... \times 2 \times 1$ $\times 1 \times 2 \times 3 \times ... \times (n-1) \times (n-2)$

$$= \prod_{t=0}^{n-1} (n-t) x (t+1)$$

>
$$\prod_{t=0}^{n-1} n$$

since (n - t) (t + 1) = n + nt - t2 - t = n + tn - t (t - 1) > n for t > 0. This proves that $(n!)^2 > n$, as required.

3. We first note that the equation has no solution in positive integers when x = 1 or 2. Thus we may assume that $x \ge 3$. Clearly, y is not divisible by 2 and 3. Hence $y = 6k \pm 1$, where $k \ge 1$. The given equation becomes:

i.e. $3 \times 2^{\times +1} = (6k \pm 1) = 36k^2 \pm 12k \pm 1$, $2^{\times -2} = k(3k \pm 1)$.

If k = 1, then we have (x, y) = (3, 5), (4, 7). If k ≥ 2 , then k(3k ± 1) contains an odd factor while 2^{x-2} does not. We thus conclude that the only solutions in positive integers are (x, y) = (3, 5), (4, 7).

4. Let
$$x = a_1 + a_2/2! + a_3/3! + \dots + a_n/n!$$

 $= a_1 + (a_2/2! + a_3/3! + \dots + a_n/n!)$
Since $a_k \ge 0$ for $k = 2, 3, \dots, n$, we have
 $a_2/2! + a_3/3! + \dots + a_n/n! \ge 0$.
Thus $x \ge a_1$ and so $[x] \ge a_1$. Moreover,
 $x = a_1 + a_2/2! + a_3/3! + \dots + a_n/n!$
 $\le a_1 + 1/2! + 2/3! + \dots + (n-1)/n!$ $(a_k \le k-1)$
 $= a_1 + \sum_{k=2}^n \frac{(k-1)}{k!}$
 $= a_1 + \sum_{k=2}^n [1/(k-1)! - 1/k!]$
 $= a_1 + 1 - 1/n!$.

Thus $[x] \leq a_1$. Since we have shown that $[x] \geq a_1$, we have $[x] = a_1$.

Next, we have for fixed k ≥ 2 . k!x = k!(a₁ + a₂/2! + ... + a_k /k! + ... + a_n /n!) = k!(a₁ + a₂ /2! + ... + a_k /k!) + k! (a_{k+1}/(k + 1)! + ... + a_n /n!)

= I + II, where $I = k! (a_1 + a_2 / 2! + ... + a_k / k!)$ and $II = k! (a_{k+1} / (k + 1)! + ... + a_n / n!)$. Obviously, I is an integer. For II, we have

$$I = k! \left(\sum_{i=k+1}^{n} \frac{a!}{i!} \right) \leq k! \left(\sum_{i=k+1}^{n} \frac{i-1}{i!} \right)$$
$$= k! \left(\sum_{i=k+1}^{n} \frac{1}{(i-1)!} - \frac{1}{1!} \right) = k! (1/k! - 1/n!)$$

$$= 1 - k!/n! < 1.$$

Hence $[k!x] = k! (a_1 + a_2 / 2! + ... + a_k / k!)$. Similarly, $[k - 1)!x] = (k - 1)!(a_1 + ... + a_{k-1} / (k-1)!)$. Thus $[k!x] - [(k - 1)!x]k = k! a_k / k! = a_k$.

- 5 The problem is equivalent to arranging the objects $a_1, \dots, a_{n-1}, \dots, b_1, \dots, b_{m+1}$ while keeping the a's and the b's in their natural order. The answer is (m+n)!/n-1)!(m+n)!. However, those with $b_m b_{m+1}$ occuring together but not at the end are repetitions. There are (m+n-2)!/(n-2)!m! of these. Therefore the answer is; (m+n)!/(n-1)!(m+1)! - (m+n-2)!/(n-2)!m!.
- We prove the identity by induction. Clearly the identity is true for n = 1. Assume that it is true for n = k. For n = k + 1, we have

(i ₁ . Σ	.i _{k+1}) a	a _{i1} (a _{i1}	+ a _{i2})	(a _{i1} +	+ ai)+1	1			
=	a ₁ +		+ a _{k+1}	$\sum_{l=1}^{\sum} a_{i_{k+1}} =$	a ai1 (ai1	+a;2)		(a _{i1} +		+ a ;)
=	1/(a ₁	+	+ a _{k+1}) { ^{k+1} ₂₌₁	1/ II i=1	a _i }	(by in	duction	hypo	thesis.)
=	1/(a1	+	+ a _{k+1})	$\begin{cases} k+1 \\ \sum_{\substack{\ell=1}} a_{\ell} \end{cases}$	/(a ₁	a _{k+1})}	=	1/a ₁	. a _{k+}	1.

Hence the identity is true for n = k + 1. This proves the identity for $n \ge 1$.

(ii) Given that $N_1 = i_1 \dots N_{10} = i_{10}$, where $(i_1 \dots i_{10})$ is a permutation of $(1, 2, \dots, 10)$, the probability that the colours of the 10 balls drawn are all distinct is

 $i_1 i_2 \dots i_{10} / i_1 (i_1 + i_2) \dots (i_1 + i_2 + \dots + i_{10})$. But P(N₁ = i_1 , ..., N₁₀ = i_{10}) = 1/10!. So the probability that the colours of the 10 balls drawn are all distinct is

 $\sum_{\substack{(i_1 \ \dots , i_{10})}} [i_1 \ i_2 \ \dots \ i_{10} \ / i_1 \ (i_1 \ + i_2 \) \ \dots \ (i_1 \ + \ \dots \ i_{10} \)] \ [1/10!]$

= 1/10! by (i).