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A check-digit is a mathematical device that attempts to detect errors 
in a numerical string. It is arrived at by a calculation based on the dig
its of the string. A transcription error in a string gets detected when a 
calculation based on the transcribed string does not give the check-digit. 
Many cataloguing systems, like the ISBN (International Standard Book 
Number), make use of check-digits for error-detection [3]. The errors may 
be due to faulty transcription or an outsider trying to break into a system 
by inventing a password. 

The basic concept that enables a check-digit to function is the classi
fication of all the relevant strings into residue classes modulo some integer 
m. This concept is expressed in the following theorem [1]. 

Theorem 1: Them residue classes [OJ, [1], [2], ... , [m- 1] are disjoint 
and their union is the set of all integers. 

Theoretically, when a numerical string and its erroneous variant fall 
into different residue classes, the check-digit will be able to detect the 
error, otherwise, the error simply goes undetected. 

The mathematical procedure used to calculate a check-digit is signif
icant in that it is like a mechanical process that assigns to all numerical 
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strings their respective residue classes. Each different mathematical proce
dure produces a different type of check-digit, and each type of check-digit 
is useful for detecting certain types of error. 

The aim of this project is to investigate the mathematical mechanism 
that enables check-digits to function, and to devise specific mechanisms 
for detecting errors. The three types o( errors under investigation are 
single-digit, transposition and 3-cycle errors. The principal method used 
is the Multiplier method, and variations of this method are investigated. 

§2. Digit-sum method 

Procedure to find check-digit for a k-digit string : All the digits in 
the string are added up and reduced (mod m) to c such that 0 ~ c < 
m. Then c is the required check-digit. For example we have an 8-digit 
string 23843521. Summing up and reducing (mod 10) to c, i.e. c = 
28 (mod 10), 0 ~ c < m, we have c = 8. So the check-digit for 23843521 is 
8, and it is usually attached to the end of the string like this : 23843521-8. 

Detection of single-digit errors 

Definition: Single-digit errors occur when one digit in a numerical string 
is copied wrongly. 

k-digit string, 
erroneous string, 

s 
S' 

bl ' b2 ' • • • ' br ' • • • ' bk 
bl ' b2 ' •.• ' b~ ' ..• ' bk 

String S' is the transcription error of S, with b~ being listed in place 
of br. Suppose we use the Digit-Sum method and the single-digit error 
does not get detected, then the check-digits calculated from S and S' must 
be equal, hence we have 

b1 + b2 + bs + · · · + br + · · · bk = b1 + b2 + bs + · · · + b~ + · · · + bk 
(mod m) 

br = b~ , {mod m) ... ( 1) 

To ensure that every single.-digit error gets detected, we need 

(mod m) ... (2) 

From here, we derive conditions on m such that (2) is satisfied. 
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Theorem 2: If a= b (mod m) and 0:::; lb- al < m then a= b. 

From Theorem 2 we obtain 

Proposition {A): Every single-digit error gets detected when m > 9. 

Transposition errors 

Definition : Transposition errors occur when two digits within a string 
switch positions. (This commonly occurs as a result of transcription). 

Clearly, transposition errors do not alter the sum of digits of a string. 
This means that the same check-digit will be obtained by the Digit-Sum 
met~~vd despite the error. It follows that the Digit-Sum method cannot 
detect transposition errors. 

§3. The Multiplier Method 

Procedure 
Multipliers 
k-digit string 

al 'a2' ... 'ak 
bl 'b2' ... 'bk 

As shown above, we have a k-digit string with multipliers attached to 
each digit, so a, corresponds to b, for i = 1, 2, ... , k. The idea then is to 
take the product a, b, and sum over every i. i.e. a1 b1 + ~ b2 + ... + a, b. + 
... + ak bk = 8, and then reduce 8 (mod m) to obtain the check-digit c i.e. 
c = 8 (mod m) 0 :::; c < m. 

(It can be observed that the Digit-Sum method is a special case of 
the Multiplier method when a1 = a2 = as = · · · = ak = 1.) 

Detection of single-digit errors 

Multipliers a1 , a2 , as, . .. , ar, ... , ak 
k-digit string, S b1 , b2 , bs, ... , br, ..• , bk 
Erroneous string, S' b1 , b2 , bs , ... , b~ , ... , bk 
( b~ was transcribed in place of br) 
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Using the Multiplier procedure, suppose that the error is not detected, 
then 

a1 b1 + · · · + a,. b,. + · · · + a~e b~e = a1 b1 + · · · + a,. b~ + · · · + a~e b~e 
(mod m) 

a,.b,. = a,.b~ (mod m) ... {3) 
To detect all single-digit errors we need 

(mod m) ... {4) 

Theorem 3: The Cancellation Law. If ac =be (mod m) and if(m, c) = d 
i.e. dis the greatest common divisorofm and c, then a= b (mod(mfd)). 

Corollary: If (m, c) = 1, i.e. m and c are relatively prime, then ac = 
be (mod m) implies a = b (mod m). By combining this corollary with 
Theorem 2 we obtain 

Proposition {B): If (a,., m) = 1 and m > 9 then every single-digit error 
gets detected. 

There are obviously many ways to choose m and a,. such that propo
sition (B) is satisfied. But certainly one of the easiest ways is to have 
conditions 

1) an= n for n = 1,2, ... ,k . 
2) m a prime greater than 9 and k 
1) and 2) together imply (an, m) = 1 

Detection of Transposition errors 

Multipliers 
k-digit string, S 
erroneous string, S' 

: a1 , ~ , ••• , a~ , ... , a,. , ... , a~e 
: bl , b2 , ... , b~ , •.. , b,. , •.. , b~e 
: bl , b2 , .•. , b,. , ... , b~ , ... , ble 

Here a transposition error has occurred, with b~ and b,. being trans
posed. Assuming that the error is not detected, then 

a 1 b1 + a2 b2 + · · · + a~ b~ + · · · + a,. b,. + · · · + a~e b~e 
= a1 b1 + ~ b2 + · · · + a~ b,. + · · · + a,. b~ + · · · + a~e b~e (mod m) 

a~b~ + a,.b,. = a~b,. + a,.b~ (mod m) 
(b~ - b,. )a~ = (b~ - b,. )a,. (mod m) ... (5) 
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To detect all transposition errors we need 

(mod m) ... (6) 

Proposition (C): Suppose the greatest possible absolute difference be
tween any two multipliers is D. All transposition errors are detected 
provided (m, (b~ - br)) = 1, m > D, and a~ =/= ar. 

Proof: When (m, (b~ - br)) = 1, then by the corollary of Theorem 3, (5) 
implies that a~ = ar (mod m) · · · (7). By Theorem 2, m > D and (7) imply 
a~ = ar (a contradiction). So (6) must hold whenever a transposition error 
occurs. 0 

Note that the conditions of Proposition (C) hold whenever conditions 
1) and 2) above hold. In fact, this is precisely the method used for the 
ISBN check-digit, where k = 9 and m = 11, see [3]. 

§4. Variations of the Multiplier Method 

In the original method, the multipliers were directly multiplied to 
the corresponding digits. But useful variations can be made by taking 
the product of the multipliers against some function of the corresponding 
digits. 

Multipliers 
k-digit string 
f( digits) 

Detection of 3-cycle errors 

... ' 

... ' 

... ' 

a,. 
b,. 

f(b,.) 

Definitions: (a) A 3-cycle is a permutation of three elements in a se
quence such that none of them remains in its original position. (b) A 
3-cycle error occurs when a 3-cycle is performed on three distinct digits 
in a string. 
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S = original string, S' = erroneously transcribed string 
Multipliers 
/(digits) S 
/(digits) S' 

al ' ~ ' . . . ' a, ' . . . ' a; ' . . . ' ar ' . . . ' ak 
f(bt), f(b'J), • • • J(b,), • • ., f(b;), • • • J(br), • • • J(bk) 
f(bt), f(b'J), • • • J(b;), • • • J(br), • • • J(ba), • • • J(bk) 

Suppose that the-error goes undetected, then we have 

a1f(bt) + ~f(b'J) + · · · + a,f(ba) + · · · + a;f(b;) + · · · + arf(br)+ 
· · · + akf(bk) 

= alf(bt) + ~f(b'J) + · · · + a,f(b;) + · · · + a;f(br) + · · · + arf(ba)+ 
· · · + akf(bk) (mod m) 

ad(ba) + a;f(b;) + arf(br) = ad(b;) + a;f(br) + arf(ba) (mod m) 
(a,- ar)f(ba) =(a,- a;)f(b;) +(a;- ar)f(br) (mod m) ... (8) 

Combination of two check-digits 

We use the functions y = x2 and y = x to obtain two different check
digits, which are then combined to form one single check-digit. 
From (8), we obtain for y = x2 andy= x respectively 

(a,- ar)b~ =(a,- a3·)b~ +(a;- ar)b~ (mod m) ... (9) 
(a,- ar)b, =(a,- a;)b; +(a;- ar)br (mod m) ... (10) 

Theorem 4: Let m be a prime greater than 9 and D, where D is the 
maximum absolute difference between any two multipliers. If (9) and {10) 
are simultaneously satisfied then b, = br = b;. 

Proof: Squaring (10), 

(a, - ar )2 b~ 

=(a,- a;) 2 b~ +(a;- ar)2 b~ + 2(a,- a;)(a;- ar)b;br(mod m) ... (11) 

Multiplying (9) by (a, - ar) and subtracting (11) 

[ (a, - a; )2 
- (a, - ar) (a, - a;) ]b~ + [ (a; - ar )2 

- (a, - ar) (a; - ar) ]b~ 
= 2(a,- a;)(ar - a;)brb; (mod m) 
(a,- a;)(ar- a;)b~ +(a,- a;)(ar- a;)b~ = 2(a,- a;)(ar- a;)brb; 

(mod m) 
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But [(a, -a; )(ar -a;), m] = 1, so by Theorem 3, 

b~ + b~ = 2brbi 

(b;- br) 2 = 0 

And since m is prime, b; - br = 0 (mod m) 

By Theorem 2 we have b; = br 

Substitute b; = br into (10), 

(mod m) 

(mod m) 

(mod m) ... (12) 

(mod m) 

(mod m) 

D 

If (9) and (10) are satisfied simultaneously, then Theorem 4 states that 
b; = br = b,, which implies that no error has occurred, and Proposition 
(D) thus follows. 

Proposition (D): When a 3-cycle error occurs, at least one of (9) and 
{10) cannot hold. 

It follows from proposition (D) that if the two check-digits produced 
by the two digit-functions are combined, then the resulting check-digit 
can detect all 3-cycle errors. For each digit-function, there are m possible 
check-digits, therefore the number of distinct combined che.ck-digits is m 2

• 

Since proposition (D)will be satisfied when the conditions for detection of 
single-digit and transposition errors are met, therefore all three types of 
error can be detected. For example, if 1) and 2) hold, then all three 
types of error are detected, and m 2 check-digits are required. In the case 
of strings of length 9, working with (mod 11) (as for ISBN) gives 121 
possible check-digits. 
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Another method to detect 3-cycle errors 

Definition: Consecutive errors are 3-cycle errors that occur on 3 digits 
which are consecutive in position. 

In practice, consecutive errors are those 3-cycle errors which occur 
most frequently. Here we develop another method to detect consecutive 
errors. Firstly, we assign distinct values to each of the digits from 0 to 
9. Then we use these values in place of the original digits to calculate 
the check-digit. This is a genP.ralization of the first method in that the 
function used is based on the following general definition: 

Definition: If ~ and B are sets, a function I : A ---+ B is a rule which 
assigns to each element a in A an element I (a) in B. 

Assuming that a consecutive error is not detected when the multiplier 
method is applied and assuming that an = n for n = 1, 2, 3, ... , k then we 
have, by (8), 

(mod m) 

We need 

(mod m) (13) 

for all i,j,r 
The problem then is to select a set of 10 integers (mod m) (one integer 

for each digit) such that no three integers are in arithmetic progression. 
Such a set can be found by trial and error, like the following: 

{0,1,3,4,9,10,12,13,27,28} (mod 43) 

Therefore (13) is satisfied if the above set is used. 
This strengthens our previous result, for this method gives a check

digit for strings of length of up to 42 digits, detecting all single-digit, 
transposition and consecutive errors, and using just 43 possible characters 
for the check-digit. These characters could possibly come from the upper 
and lower case characters of the Roman letter set. 

This method leads to the following problem: 
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Problem: Given k, lind the least m such that, for some set b1 , b2 , ••• , b,. 
of distinct residues (mod m), (13) holds. 

The above problem is analogous to the famous unsolved problem of 
planar difference sets [2]. In a planar difference set, it is required that all 
possible absolute differences between two elements be distinct (mod m). 
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