The Alexander-Conway polynomial of the Generalized Hopf link *

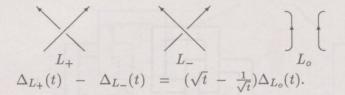
C.Foo Y.L.Wong A.C. Junior College Nat.Univ. of Singapore

§1. Introduction

For each oriented link L, a Laurent polynomial $\Delta_L(t)$ with integral coefficients is uniquely determined by the following two axioms:

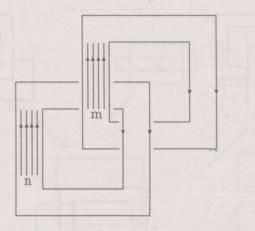
(I) $\Delta_U(t) = 1$, where U is the unknot.

(II) For any 3 links L_+ , L_- and L_o which are identical except within a small region where they have projections as below :



 Δ_L is called the Alexander-Conway Polynomial of L.

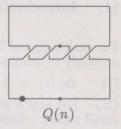
In this paper we try to calculate the Alexander-Conway polynomial of the following link.

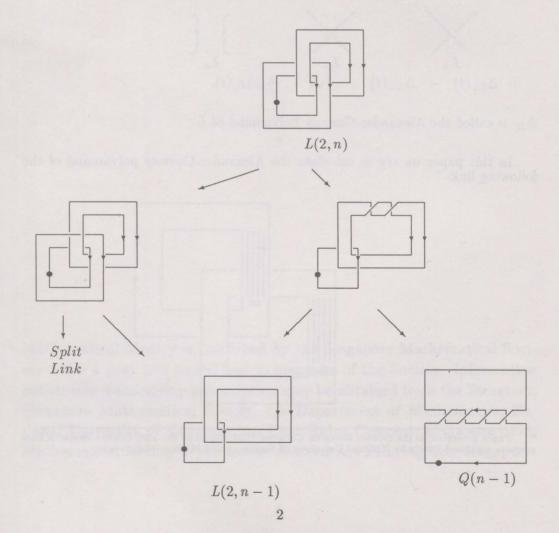


* Paper presented to the Science Research Congress 1990 as part of the 1990 Science Research Programme organised jointly by National University of Singapore and Ministry of Education. This is a multiple cable of the Hopf link. We denote this link by L(m, n). Recently it has been shown in [1] that knot polynomials of cables of links play an important role in the calculation of some new invariants of 3-manifolds. We are able to calculate the Alexander - Conway polynomial of L(2, n). The general case is still to be determined.

§2. The Generalized Hopf link

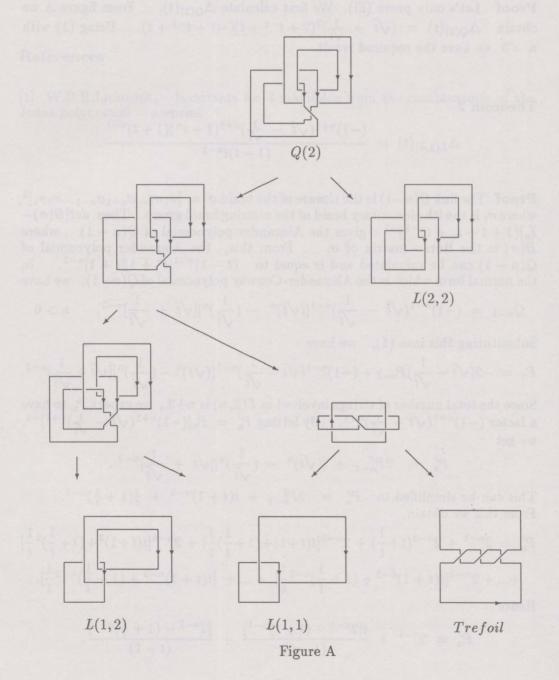
Let Q(n) be the link shown on the right. Here the dotted string represents n parallel strings all oriented in the same sense. In order to calculate $\Delta_{L(2,n)}(t)$, the following skein tree is derived.





For simplicity we denote $\Delta_{L(2,n)}(t)$ by P_n and $\Delta_{Q(n)}$ by Q_n . Using axiom II and the fact that $\Delta_{SplitLink}(t) = 0$, we have from the above diagram the following relation.

(1) $P_n = -2(\sqrt{t} - \frac{1}{\sqrt{t}})P_{n-1} + (\sqrt{t} - \frac{1}{\sqrt{t}})^2 Q_{n-1}$



Theorem 1 (i) $\Delta_{L(1,n)}(t) = (-1)^n (\sqrt{t} - \frac{1}{\sqrt{t}})^n$ (ii) $\Delta_{L(2,2)}(t) = -(\sqrt{t} - \frac{1}{\sqrt{t}})^3 (2 + t^{-1} + t)$ (iii) $\Delta_{L(2,3)}(t) = (\sqrt{t} - \frac{1}{\sqrt{t}})^4 (2 + t^{-1} + t)(1 + t^{-1} + t)$

Proof Let's only prove (iii). We first calculate $\Delta_{Q(2)}(t)$. From figure A we obtain $\Delta_{Q(2)}(t) = (\sqrt{t} - \frac{1}{\sqrt{t}})^2(2 + t^{-1} + t)(-1 + t^{-1} + t)$. Using (1) with n = 3 we have the required result.

Theorem 2

$$\Delta_{L(2,n)}(t) = \frac{(-1)^{n+1}(\sqrt{t} - \frac{1}{\sqrt{t}})^{n+1}(1-t^n)(1+t)^{n-1}}{(1-t)t^{n-1}}.$$

Proof The link Q(n-1) is the closure of the braid $\sigma = [\sigma_1 \sigma_2 \dots \sigma_{n-1} \sigma_{n-1} \dots \sigma_2 \sigma_1]^2$, where σ_i is the ith elementary braid of the n-string braid group. Then $det[B(\sigma) - I_n](1 + t + \dots + t^{n-1})^{-1}$ gives the Alexander polynomial of Q(n-1), where $B(\sigma)$ is the Burau matrix of σ . From this, the Alexander polynomial of Q(n-1) can be calculated and is equal to $(t-1)^{n-1}[t^n+1][t+1]^{n-2}$. In the normal form which is the Alexander-Conway polynomial of Q(n-1), we have

$$Q_{n-1} = (-1)^{n-1} (\sqrt{t} - \frac{1}{\sqrt{t}})^{n-1} [(\sqrt{t})^n - (\frac{1}{\sqrt{t}})^n] [\sqrt{t} + \frac{1}{\sqrt{t}}]^{n-2}, \quad n > 0$$

Substituting this into (1), we have

$$P_n = -2(\sqrt{t} - \frac{1}{\sqrt{t}})P_{n-1} + (-1)^{n-1}(\sqrt{t} - \frac{1}{\sqrt{t}})^{n-1}[(\sqrt{t})^n - (\frac{1}{\sqrt{t}})^n][\sqrt{t} + \frac{1}{\sqrt{t}}]^{n-2}.$$

Since the total number of strings involved in L(2, n) is n+2, we expect P_n to have a factor $(-1)^{n+1}(\sqrt{t} - \frac{1}{\sqrt{t}})^{n+1}$. By letting $P'_n = P_n[(-1)^{n+1}(\sqrt{t} - \frac{1}{\sqrt{t}})^{n+1}]^{-1}$, we get

$$P'_{n} = 2P'_{n-1} + \left[(\sqrt{t})^{n} - (\frac{1}{\sqrt{t}})^{n}\right]\left[\sqrt{t} + \frac{1}{\sqrt{t}}\right]^{n-2}.$$

This can be simplified to $P'_n = 2P'_{n-1} + t(t+1)^{n-2} + \frac{1}{t}(1+\frac{1}{t})^{n-2}$. From this we obtain

$$P'_{n} = 2^{n-1} + 2^{n-2}(t+\frac{1}{t}) + 2^{n-3}[t(t+1) + (1+\frac{1}{t})\frac{1}{t}] + 2^{n-4}[t(t+1)^{2} + (1+\frac{1}{t})^{2}\frac{1}{t}] + \dots + 2^{n-k}[t(t+1)^{k-2} + (1+\frac{1}{t})^{k-2}\frac{1}{t}] + \dots + [t(t+1)^{n-2} + (1+\frac{1}{t})^{n-2}\frac{1}{t}].$$

Hence

$$P'_n = 2^{n-1} + \frac{t[2^{n-1} - (t+1)^{n-1}]}{(1-t)} + \frac{[2^{n-1} - (1+\frac{1}{t})^{n-1}]}{(t-1)}$$

$$=\frac{[(1-t^n)(1+t)^{n-1}]}{[(1-t)t^{n-1}]}.$$

Therefore

$$P_n = \frac{(-1)^{n+1}(\sqrt{t} - \frac{1}{\sqrt{t}})^{n+1}(1-t^n)(1+t)^{n-1}}{(1-t)t^{n-1}}$$

References

[1] W.B.R.Lickorish, Invariants for 3-manifolds from the combinatoric of the Jones polynomial preprint