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12. The Binomial Expansion 

In Section 4 of [2], we introduced a family of numbers which 

was denoted by ( ~) or c; . Given any integers n and r with 

0 ::::; r::::; n, the number C) is defined as the number of r-element 

subsets of the set lN,= (1, 2, ... , nl. That is, C) is the number 

of ways of selecting r distinct objects from a set of n distinct 

objects. We also derived the following formula for ( ~): 

( n) n! 
r - r!(n - r)! 

(1) 

By applying (1 ), or otherwise, we can easily derive some interesting 

identities involving these numbers such as 

C) (nn-r), (2) 

C) c- 1) + (n- 1) r -1 r , (3) 

rC) c -1 ) n r- 1 , r ~ 1 (4) 

(:)C)= C) (~--rr). (5) 

In this article, we shall learn more about this family of numbers 

and derive some more important identities involving C). 

Problem 12.1 

Prove identities (4) and (5). (Note that (4) is a special case of (5).) 

In algebra, we have learnt how to expand (assuming that the 

usual commutative, associative and distributive laws hold) the 

algebraic expression (1 + x( for n = 0, 1, 2, 3. Their expansions 

are shown below: 

(1 + x)o = 
(1 + x)

1 = 1 + X 

(1 + x)
2 = 1 + 2x + x2 

(1 + x)
3 = 1 +3x+3x2 +x3

• 

Notice that the coefficients in the above expansions are actually 

numbers of the form C). Indeed, we have: 

1 = (~) 

1 = (~) 1 =c) 

1 = (~) 2 = (~) (~) 

(~) 3 = (~) 3 = (~) = ( ~ ). 

What can we say about the coefficients in the expansion of 

(1 + x)
4

? Would we obtain 

(1 + x)
4 

= (~) + (~)x + (;)x
2 

+ C)x
3 

+ C)x
4 

Let us try to find out the coefficient of x 2 in the expansion of 

(1 + x( We may write 

(1 + x)4 
= (1 + x)(1 + x)(1 + x)(1 + x). 

(1) (2) (3) (4) 

Observe that in the expansion, each of the factors (1 ), (2), (3) and 

(4) contributes either '1 'or 'x', and they are multiplied to form a 

term. For instance, to obtain x 2 in the expansion, two of (1 ), (2), 

(3) and (4) contribute 'x ' and the remaining two contribute '1 '. 

How many ways can this be done? Table 1 shows all possible 

ways, and the answer is 6. 

(1) (2) (3) (4) 

X X 

X X 

X X 

X X 

X X 

X X 

Table 1 

Thus there are 6 terms of x2 and the coefficient of x 2 is therefore 

6 in the expansion of (1 + x( Indeed, to select 2 'x' from 4 

factors (1 + x), there are ( i) ways (and the remaining two have 

no choice but contribute '1 '). Thus the coefficient of x2 in the 

expansion of (1 + x)
4 

is ( i ), which is '6'. Using a similar 

argument, one can readily see that 

In general, what can be said about the expansion of (1 + x)", 

where n is any natural number? 

Let us write 

(1 + x) " = (1 + x) (1 + x) 

(1) (2) 

(1 + x). 

(n) 

(*) 

To expand (1 + x(, we first select either '1' or 'x' from each of 

the n factors (1 + x), and then multiply the n chosen '1 or x' 

together. The general term thus obtained is of the form x', where 

0 ::::; r::::; n. What is the coefficient of x' in the expansion of (1 + x)" 

if the like terms are grouped? This coefficient is the number of 

ways to form the term 'x" in the product(*). To form a term 'x", 

we choose r factors (1 + x) from the n factors (1 + x) in (*) and 

select 'x' from each of the rfactors chosen. Each of the remaining 

n - r factors (1 + x) has no choice but contributes '1'. Clearly, the 

above selection can be done in ( ~ ) ways. Thus the coefficient 

of x' in the expansion of (1 + x)" is given by C)· We thus arrive 

at the following result which was first discovered by Newton : 
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The Binomial Theorem (BT) 

For any natural number n, 

(1 + x( = ( ~) + C)x + {;)x2 
+ ... + C )x' + ... + C)xn. 

n ' 
As ( r ) s are the coefficients of the terms in the expansion of 

(1 + x(, these numbers are often called the binomial coefficients. 

13. Some Useful Identities 

We gave four simple identities involving binomial coefficients, 

namely (2) - (5), in the above section. In this section, we shall 

derive some more identities involving binomial coefficients from 

(BT). These identities are not only interesting in their own right, 

but also useful in simplifying certain algebraic expressions. 

Consider the expansion of (1 + xl" in (BT). If we let x = 1, we 

then obtain from (BT) the following: 

(B1) (~)+(~)+C)+ ... + C)= 2". 

Example 13.1 

In Example 6.2 of [3], we discussed a counting problem on &J(S), 

the set of all subsets of a finite set 5. It can be shown by applying 

(BP) (see Problem 6.1 of [3]) that if 5 is an n-element set (i.e., 

151 = n), then there are exactly 2n subsets of 5 inclusive of the 

empty set~ and the set 5 itself (i.e., I &J(S)I = 2n ). We can now 

give a more 'natural' proof for this fact. Assume that 151 = n. By 

definition, the number of 

0 - element subset of 5 is ( ~ ), 

1 - element subsets of 5 is ( ~), 

2 - element subsets of 5 is ( ;), 

n - element subset of 5 is (nn). 

Thus, 

l&o(S)I = (~) + (~) + (;)+ ... +C) 

= 2n (by (B1 )). 

Example 13.2 

The number '4' can be expressed as a sum of one or more 

positive integers, taking order into account, in the following 8 

ways: 
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4 = 4 

= 1 + 3 

= 3 + 1 

= 2 + 2 

= 1 + 1 + 2 

= 1 + 2 + 1 

= 2 + 1 + 1 

=1+1+1+1. 
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Show that every natural number n can be so expressed in 2 
17 - 1 

ways. 

This is in fact Problem 6.5 stated in [3]. Let us see how (B1) can 

be used to prove the result. But first of all, consider the above 

special case when n = 4. 

We write 4 = 1 + 1 + 1 + 1 and note that there are three '+"s 

in the expression. Look at the following relation. 

4 H 1 + 1 + 1 + 1 

4 

1 + 3 H1 EB1 + 1 + 1 

3 

3 + 1 H1 + 1 + 1 EB1 -
3 1 

2 + 2 H1 + 1 EB 1 + 1 -- --
2 2 

1 + 1 + 2 H 1 EB 1 EB 1 + 1 - --
1 1 2 

1 + 2 + 1 H1EB1+1 EB1 - --
1 2 1 

2+1+1 H1+ EB1EB1 

2 1 1 

1+1+1+1 H1EB1EB1EB1 

1 1 1 1 

This relation is actually a bijection between the set of all such 

expressions of '4' and the set of all subsets of three '+"s. Thus, 

by (BP) and (BT), the required answer is 

In general, write 

n=1+1+ ... +1+1 

n 

and note that there are n- 1 '+"s in the expression. By extending 

the above technique of establishing a bijection, it can be shown 

that the number of all such expressions of 'n' is 

(
n-1) (n-1) (n-1) = 2n-1 

0 + 1 + ... +n-1 (by B(1)). 

Problem 13.1 

By applying identity (5), or otherwise, show that 

f(n)(k) = (n) 2n - r1 

k= r k r r 

where 0 :o; r :o; n. 

Problem 13.2 

Show that 
ni (2n- 1) = 22n -2 

k=O k 



Consider again the expansion of (1 + x( in (BT). If we now let 

x = -1 we then have 

(~)-(~)+C) - (;) + ... + (-1) "C) = o, 

where the terms on the LHS alternate in sign. Thus, if n is even, 

say n = 2k, then 

and if n is odd, say n = 2k + 1, then 

As 

[(~)+C) + ... J + [(~) + (;) + ... J = 2" 

by (B1), we have 

Example 13.3 

A finite set 5 is said to be even (resp., odd) if IS I is even (resp., 

odd). Consider lN8 = {1, 2, ... , 8}. How many even subsets does 

lN8 have? How many odd subsets does INs have? 

The number of even subsets of lN 8 is 

and the number of odd subsets of INs is 

(~) + (~) + (~) + (~). 

By (B2), 

( ~) + ( ~) + ... + ( ~) ( ~) + ( ~) + ( ~) + ( ~) 
= 28

-
1 = 27 = 128. 

Problem 13.3 

By applying identity (4), or otherwise, show that 

k~l (-1)kkC) = o. 

Consider the following binomial expansion once more: 

If we treat the expressions on both sides as functions of x, and 

differentiate them with respect to x, we obtain: 

n - 1 (n) (n) (n) 2 (n) n - 1 n(1 + x) = 
1 

+ 2 
2 

x + 3 
3 

x + ... + n n x . 

By letting x = 1 in the above identity, we have: 

n- 1 
= n.2 . 

Note also that (B3) is a special case of the identity stated in 

Problem 13.1 when r = 1. 

Let us try to derive (B3) by a different way. Consider the following 

problem. Suppose that there are n (n ~ 1) people in a group, and 

they wish to form a committee consisting of people from the 

group, including the selection of a leader for the committee. In 

how many ways can this be done? 

Let us illustrate the case when n = 3. Suppose that A, 8, Care 

the 3 people in the group, and that a committee consists of k 

members from the group, where 1 :::; k:::; 3. For k = 1, there are 

3 ways to do so as shown below 

Committee member Leader 

A A 

B B 

c c 

For k = 2, there are 6 ways to do so as shown below. 

Committee members Leader 

A, B A 

A, B B 

A, C A 

A, C c 
B, C B 

B, C c 

For k = 3, there are 3 ways to do so as shown below. 

Committee members Leader 

A, B, C A 

A, B, C B 

A, B, C c 

Thus, there are altogether 3 + 6 + 3 = 12 ways to do so. 

In general , from a group of n people, there are ( ~) ways to form 

a k-member committee, and k ways to select a leader from the 

k members in the committee. Thus, the number of ways to form 

a k-member committee including the selection of a leader is, by 

(MP), kC). As k could be 1, 2, ... , n, by (AP), the number of 

ways to do so is given by 

Ik( n) 
k= I k · 
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Let us count the same problem with a different approach as 

follows. First, we select a leader from the group, and then choose 

other k - 1 members (k = 1 . 2, ... , n) from the group to form 

a k-member committee. There are n choices for the first step 

and C ~ 1
) + C; 1

) + ... + (~ ~; )ways for the second step. 

Thus, by (MP) and (81 ), the required number is 

[(
n-1) (n-1) (n-1)] n-1 n 0 + 1 + ... + n- 1 = , n. 2 

Since both k~ k( ~) and n. 2"-
1 

count the same number, identity 

(83) follows. 

In the above discussion, we estab lish identity (83) by first 

introducing a 'su itable' counting problem, we then count the 

problem in 2 different ways so as to obtain 2 different expressions. 

These 2 different expressions must be equal as they count the 

same quantity. This way of deriving an identity is quite a common 

practice in combinatorics, and is known as 'Counting it twice'. 

Problem 13.4. 

Show that 

I _1_ ( n) = _1_ (2" + 1 _ 1) 
k=O k + 1 k n + 1 

by integrating both sides of (1 + x( = ~!:)/with respect to x. 

Problem 13.5 

Show that 
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