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Let's start with a problem. I have four green frogs on four 

lilypads on the right and four spotted frogs on four lilypads 

on the left. There is one lilypad in the middle between them. 

The green frogs want to go to the left and the spotted frogs 

want to go to the right. They can move by hopping on to an 

adjacent empty lilypad or by jumping over one other frog 

onto an adjacent empty lilypad. What is the smallest number 

of moves which will get the green frogs to the left and the 

spotted frogs to the right? 

The initial and final positions of the frogs is shown below in 

Figure (a) and (b) respectively. 

(a) .S. .S. .S. .S. 

Figure 1 

At this stage in almost any problem, I don't have a clue as 

to what to do. If anyone is looking over my shoulder, then 

I generally panic. After a little while though, it seems to me 

that it might be useful if I could get hold of some frogs. 

Plastic ones are fine. Real ones tend not to jump the way 

you want them to. But pieces of paper will do. Then it's 

experiment time. just play with your frogs and hope you get 

a good idea. 

The first good idea seems to be that eight frogs are too much 

to handle. I can't keep track of them all. If I play around with 

just one or two, then that might give me the breakthrough I 

need. Trying a single case is always a useful problem solving 

strategy. Let's start with one green frog and one spotted frog. 

Figure 2 shows that I can swap single frogs around easily. 
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G S 
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3 

One frog a side in 3 moves. 

Figure 2 

I'm not sure that that told me too much though. It was far 

too easy. Maybe two frogs a side will be better. I've made a 

start in Figure 3. 

S S G G 
S S G G 
S S G G 2 

Figure 3 

The second move in Figure 3 doesn't seem too smart. The 

only two moves I have available send me back to a previous 

position. It looks as if I should have moved a spotted frog on 

my second go rather than a green one. Let's see how far that 

gets me. 

S G S G 

S S G G 
S S G G 
S G S G 

S G S G 
G S S G 

GSSG SGGS G SSG GSGS 

Figure 4 
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Figure 4 shows various directions I could go, assuming all 

frogs always move forward. Surely backward moves will mean 

more moves, so it's a fair guess that I should keep going 

forward if at all possible. 

Three of the bottom four situations of Figure 4 worry me. In 

two of them I can make one more forward move before I 

have to send at least one frog back. The third position forces 

a backward move straight away. For the moment I'll keep 

going with the situation on the extreme right because this 

looks more promising. This is done in Figure 5. 

G S G S 
G S G S 
G 
G G 
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Two frogs a side in 8 moves 

Figure 5 

So I can swap two pairs of frogs in 8 moves. I think it's not 

too difficult to show that it can't be done in fewer moves. 

Certainly the situations that caused backward moves lead to 

more than 8 moves. 

Before I go on to three frogs it's worth reflecting. What are 

good positions to get into and what are bad positions? I 

seem to have to back up when I get two frogs of the same 

type together. Is this what I need to avoid? We'll need to 

think about that for a bit. Clearly at the beginning and towards 

the end, we want two (or more) of the same frogs to be next 

to each other. Along the way though they appear to be a bad 

thing. Let's keep this in mind and do the three frogs case. 

Ah! Keeping pairs of the same type of frog apart for as long 

as possible, I can swap them over in 15 moves. Can you do 
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any better? I'm going to assume that you can't for now. In 

that case I'll draw up the table below to see what I can 

expect for four frogs a side. In the table n is the number of 

frogs on each side. 

n 

2 

3 

4 

number of moves 

3 

8 

15 

Table 1 

Is there a pattern there? Hang on! I think I have two patterns. 

After all 3 = 1 X 3, 8 = 2 X 4, 15 = 3 X 5. That looks 

like we might have a general formula of n (n + 2). But I've 

also realised that 3 = 22-1, 8 = Y -1 and 15 = 42 -1. This 

gives a general pattern of (n + 1 )2 - 1. Which of these two 

formulae is correct? Or is there another formula? Perhaps the 

correct one. 

Actually both the formulae I've found give the value of 24 for 

the 4 green and 4 spotted frog problem. The test now is to 

see whether I can get that or not. But the guiding principle 

I'll use is to keep frogs of the same type apart as far as 

possible and use the ideas of the two and three frog prob lem. 

Actually the only other idea that seems to exist is to leap frog 

forward as many frogs of the same type as possible one after 

the other. In between times, the odd frog has to slide forward 

just one lilypad in order to open up a string of leap fragging. 

OK. So I think I'm on top of that. With a bit of luck I can 

probably work it out. So let's do it. Figure 6 shows the last 

few moves. I'll let you fill in the early details. 
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G - s 
G G s 
G G s 
G G s 
G G -

G G G 

G s G s s 19 
- s G s s 20 

G s s s 21 
G - s s s 22 

G s s s s 23 
- s s s s 24 

Figure 6 

The question is, have we now finished? We've certainly 

managed to swap our frogs in 24 moves but that wasn's the 

original question. That asked for the smallest number of moves 

required. How do we know that 24 is the smallest? 

There are various ways that you can react to this. One of 

them is to say "Well, I enjoyed playing with the frogs and I 

don't really care if it's not the smallest". Another way to 

react is to say "I'm blowed if I can see any other way of 

doing things so this must be the smallest." Unfortunately 

mathematicians, bless their cotton socks, will say "There must 

be a proof, if it's true, or a counterexample, if it's false, I 

won't rest until I've found one or the other". 

Now mathematicians can be a pain at times but I'm going 

to follow through with the last question. If 24 is right, we 

might be able to find a proof. If 24 is wrong, then there has 

to be another way to do the swapping which uses less than 

24 moves. This would be the counterexample . So how can 

I find a proof or a counterexamp le? 

Once again trying the 4 case looks too hard. But I might be 

able to prove things for n = 1, 2, and 3. That might put me 

onto the right track for n = 4. 

As before, n = 1 is a doddle. I can put down all possible 

moves and check out that I get the swap first after three 

moves. An exhaustive search does the problem here. To speed 

things up we can use a bit of symmetry. After al l, it doesn't 

matter whether we move G or S first. So, without loss of 

generality, move G (as I did in Figure 2.) The second move 

is clearly a leap frog by S (otherwise you get back to where 

you started). Moving G completes the swap. Clearly we can't 

do any better than 3 with n = 1. 

Let's keep the ball rolling for n = 2. Without loss of generality, 

again, move the left most G. (Jumping a G puts two Gs 

together, which is probably bad.) Then we can go back to 

Figure 4. As we said before three of the situations at step 5 

mean we require a backward move. Even if we do this move, 

we get back to a situation from a previous step. So the right 

hand configuration is the only active one. It's easy to see that 

we can complete the swap in less than three moves from 

here. 

An exhaustive search, trying every case, works for n = 2. Try 

it for n = 3. It should work there too. By the time you get 

to n = 4 you should be convinced that 24 is best but it's 

going to take a tour de force to go through all the cases. 

One way round this, of course, is to bring in your friendly 

neighbourhood computer. These things are good at doing 

routine computations. What is an exhaustive search here if 

it is not fu II of routine computations? 

Is there a better way though? This all reminds me of the Four 

Colour Theorem, where a computer proof is the only one 

we've got. But it never seems very satisfactory. How else can 

we settle this problem? Can we tackle it analytically in some 

way? 



Let's go back to n = 1. How many lilypads do the frogs have 

to travel over or on? Well the green frog has to get by 2 and 

the spotted frog 2. Altogether 4 lilypads have to be traversed. 

How many leap frogs are there? Surely only one. The green 

frogs leap the spotted or the spotted frogs leap the green. 

Once it's done, and everything keeps moving forward, then 

no frogs ever encounter each other again. All other moves 

must be simple moves onto a neighbouring lilypad. Now 

each leapfrog takes 2 lilypads so we've got 4 - 2 = 2 more 

lilypads to traverse. As these need single moves there have 

to be 2 single moves. Now 2 single moves plus 1 leapfrog 

give the 3 moves we already found. 

Let's try this for n = 2. Here the frogs have to traverse 3 

lilypads each. So 12 lilypads have to be traversed in total. 

The only leap frogs occur when green frogs and spotted frogs 

meet. Each green frog meets 2 spotted frogs so there are 4 

leapfrogs. These account for 8 lilypads. Since 12 - 8 = 4, 

there must be 4 single moves. Now 4 single moves plus 4 

leapfrogs gives a total of 8 moves. 

We're cooking on gas! The case n = 3 can be done in the 

same way. Try it. I'll wait while you do. 

If you've mastered that, then n = 4 should be a cinch! 

If we are going to prove that 24 is the fewest moves required 

for n = 4, then before we use the counting technique that we 

invented for n = 1, 2, we have to realise that the fewest 

number of moves in the n = 4 case is less than or equal to 
24. I can do it in 24 (see the end part in Figure 6) but one 

of you may see a quicker way. (So 24 is an upper bound.) 

Now the counting technique. (How many lilypads traversed? 

How many leapfrogs? So how many single moves?) will give 

a lower bound to the problem. It may be that we can't 

actually use precisely the number of moves this technique 

gives us. However, we know that we must use at least this 

many moves. 

Fortunately the counting technique also gives 24. Hence we 

know that 24 is the fewest moves for n = 24. 

Now prove that n frogs on each side can swap themselves 

in n (n + 2) moves. Or is it (n + 1)2
- 1? 

So how did you get on that? I couldn't talk to each one of 

you individually and answer every question you had at each 

stage. So this article is only a outline for tackling problem 

solving. I've tried to take you through the problem without 

telling you how to do it. In person I would have expected a 

bigger contribution from you. But I hope I've left enough 

open space for you to get some achievement out of the frog 

problem. 

Any other problem can be worked on in a similar way to the 

frog problem. Of course, there are strategies other than 

experimenting, trying smaller cases and so on, but you can 

read about those in Polya's books. I think it is always important 

to justify your answer too. Otherwise how do you know you 

are right? 

If you want a real challenge and completely solve the frog 

problem, tell me why I shouldn't allow G G or S S, at least 

not until the latest possible moment. I'm not sure I can quite 

do that yet but you know where to write to me. And proving 

that the algorithm I've developed up to n = 4 works for n in 

general and requires n (n + 2) moves, isn't all that easy 

either. M' 
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Author's note: 

Lilypads are just big leaves that float on top of the water a bit like 

lotus leaves. If the lilypads are big enough frogs and other creatures 

can rest on top of them. Leap frog is a game played by children. 

One child bends over at the waist and the next one in line jumps 

over him. The second child then bends over. The third child then 

jumps over both bending children in turn. The game continues by 

induction. I guess that the frog part of the leap frog comes about 

because as the children jump they put they hands on the back of 

the child who is bending. With their arms in and their leags spread 

in the jump, they look a bit like frogs. 
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