
In many situations, a solution of a problem can be obtained by working backwards 

from the final configuration of the problem towards the beginning. The idea of working 

backwards is quite commonly used in solving dynamic programming problems, such 

as network, inventory and resource allocation problems. We shall illustrate how working 

backwards can make a seemingly difficult problem almost trivial to solve via the 

following well-known puzzles: 

Example 1 

Suppose that there are 40 match sticks on a table. I begin by picking up 1, 2, 3 or 

4 sticks. Then it's my opponent's turn to pick up also 1, 2, 3 or 4 sticks; and after that 

it's my turn again to pick up 1 to 4 sticks. We continue in this manner until the last 

stick(s) is picked up. The player who picks up the last stick is the loser. How can I 

(the first player) be sure of winning? 

Solution 

It is clear that if at the end I can force my opponent's turn with 1 match stick left, I 

will win. Working one step backwards, if I can force my opponent's turn with 6 sticks 

left, I can be sure of winning. The reason is no matter how many (1 to 4) sticks he 

picks up when 6 sticks are left for him, when it comes to my turn, I will be able to 

leave the last stick to him. Similarly, working backwards, if I can force my opponents's 

turn to occur with 11, 16, 21, 26, 31 or 36 match sticks left on the table, I will win. 

Therefore if I pick up 40 - 36 = 4 matches at my first turn and at each successive turn, 

leave him with 31, 26, 21, 16, 11 or 6 sticks, I will be sure of winning. 

If the one who picks up the last match stick is the winner, how should I (as the first 

player) modify the winning strategy? 
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Example 2 

Given a 7 -ounce cup and a 3-ounce cup, how do we return 
from a well with 5 ounces of water? 

Solution 

We note that if there is 1 ounce of water in the 3-ounce cup 

and we fill up the 7-ounce cup, we can then empty 2 ounces 
of water from the 7-ounce cup into the 3-ounce cup and we 

are done. To get 1 ounce of water in the 3-ounce cup we 

can simply fill up the 7-ounce cup. Then empty the 7-ounce 
cup twice into the 3-ounce cup and pour the remaining 

ounce from the 7-ounce cup into the 3-ounce cup. The 
above solution of the problem is summarised in the table 

below starting from state (9) to the final state (1 ). 

state Amount of water (in oz.) Amount of water (in oz.) 

(9) 

(8) 

(7) 

(6) 

(5) 

(4) 

(3) 

(2) 

(1) 

Example 3 

in 7-ounce cup 

5 

5 

7 

0 

4 

4 

7 

in 3-ounce cup 

0 

3 

0 

3 

0 

3 

0 

Given 20 identical coins and one counterfeit coin with a 

lighter weight. If the counterfeit looks exactly like a genuine 

one, how many weighings, using a perfectly balanced two

pan scale, do you need at the most in identifying the 

counterfeit? 

Solution 

With one weighing we can find the counterfeit coin from a 

lot of three as follows: put any two coins on the scale, one 

in each pan. If one of themis the counterfeit, we can identify 

it directly from the scale. If not, the scale will be balanced 
and certainly the third coin is the counterfeit. Now we can 

ask the question: What is the number of coins (including the 

counterfeit) in a lot so that in at most two weighings we can 
identify the counterfeit? 

Working backwards, the second (final) weighing will be the 
one we described above with the lighter coin in a lot of 

three. Using the same principle, we can identify such a lot 

of three coins in one weighing if we work with a lot of 7 
coins (by putting 3 coins in each pan, and of course if we 

were lucky we may identify the counterfeit in one weighing). 
Thus we can solve the given problem in 2 weighings at the 

most if there are just 7 coins. Now with 21 coins, we can 

easily decide in one weighing which lot of 7 coins contains 
the counterfeit~ simply divide the 21 coins in 3 lots of 7 

coins and apply the same principle which we had used 
earlier for a lot of 3 coins. We can therefore solve the problem 

in 3 weighings at the most. 

If we did not know whether the counterfeit is heavier or 

lighter, how many weighings do you need at the most to 

identify it? Happy weighing! M' 
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