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14. Pascal's Triangle 

In Section 12 of [6], we established the Binomial Theorem (BT) 

which states that for all nonnegative integers n, 

(1 + x( = I( ~ )x'. 
r =0 

Let us display the binomial coefficients ( ~) row by row following 

the increasing values of n as shown in Figure 14.1. 

( ~ ) = 1 

Figure 14.1 

We observe that in Figure 14.1 , 

1. the binomial coefficient at a lattice point counts the number of 

shortest routes from the top lattice point (representing ( ~ )l to the 

lattice point concerned. For example, there are ( ~ )(=6) shortest 

routes from the lattice point representing ( ~ ) to the lattice point 

( ~ ) (see Example 6.1 also); 

2. the number pattern is symmetric with respect to the vertical line 

through the top lattice point, and this observation corresponds to 

the identity ( ~) = ( n ~ r ); 

3. Any binomial coefficient represented by an interior lattice point is 

equal to the sum of the two binomial coefficients represented by 

the lattice points on its 'shoulders' (see Figure 14.2). This observation 

corresponds to the identity ( ~) = ( ~ ~ ~) + ( n ~ 1 
) ; 
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Figure 14.2 

4. the sum of the binomial coefficients in the nth row is equal to 

2" and this fact corresponds to the identity 

( ~ ) + ( ~ ) + ... + ( ~ ) = 2". 

The number pattern of Figure 14.1 was known to Omar Khayyam 

and jia X ian 1fl ~ around 1100 A.D, and it was found in the book 

written by the Chinese mathematician Yang Hui ;#;~ in 1261 in 

which Yang Hui called it jia Xian triangle. The number pattern in the 

form of Figure 14.3 was found in another book written by the Chinese 

mathematician Zhu Shijie '*-i!t-~ in 1303. 
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Figure 14.3 



However, the number pattern of Figure 14.1 is generally called Pascal's 

triangle in memory of the great French mathematician Blaise Pascal 

(1 623-1 662) who also applied the 'triangle' to the study of probability, 

a subject dealing with 'chances'. For the history of this number pattern, 

readers are referred to the book [1 J. 

Blaise Pascal 

Figure 14.4 

15. An Identity 

Look at Pascal's triangle of Figure 1 5.1. 

2 

3 3 

4 6 4 

5 10 10 5 

6 15 20 15 6 

7 21 35 35 21 7 

8 28 56 70 56 28 8 

Figure 15.1 

What is the sum of the six binomial coefficients enclosed in the 

rectangle? The answer is '56'. Note that this answer appears as another 

binomial coefficient located at the right side of '2 1' next row. Is this 

situation just a coincidence? Let us take a closer look. 

Observe that 

1 + 3 + 6 + 10 + 15 + 21 

= (~) + (~) + (~) + (~) + (~) + (~) 

= ( ~ ) + ( ~ ) + ( ~ ) + ( ~ ) + ( ~ ) + ( ~ ) ( as ( ~ ) = ( ~ ) ) 

=(~)+(~)+(~)+(~)+(~) 

=n)+(~)+(~)+(~) 

= ( ~ ) + ( ~ ) + ( ~ ) 

=(;)+(~) 

= ( ~ )(=56), 

by applying the identity ( ~ ~ ~) + ( n ~ 1 
) = ( ~ ) . 

The above result is really a special case of a general situation. As a 

matter of fact, the above argument could also be used to establish the 

following general result: 

For any nonnegative integers n and k with n ~ k, 

( ~ ) + ( \+ 
1 

) + ... + ( ~ ) = ( ; : 
1

1
) (B4) 

(see Figure 1 5.2) . 

. A. 

( ~) ... 

Figure 15.2 

By the symmetry of Pascal 's triangle, one obtains the following 

accompanied identity of (B4) (see also Figure 1 5.3): 

.A. 

Figure 15.3 

16. An IMO Problem 

In this section, we show an application of identity (B4) in the solution 

of the following problem, which appeared in International 

Mathematical Olympiad 1981. 

Example 16.1 Let 1 $ r $nand consider all r-element subsets of the 

set {1, 2, ... , n). Each of these subsets has a smallest member. Let 

F(n,r) denote the arithmetic mean of these smallest numbers. Prove 

that 

n + 1 
F(n, r) = f+l· 

As an illustration of this problem, consider the case when n = 6 and 

r = 4. There are (! )(=1 5) 4-element subsets of the set {1, 2, 3, 4, 5, 6). 

They and their smallest members are listed in Table 16.1. By definition 

of F(6,4), we have 
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F(6, 4) = (10.1 + 4.2 + 1.3) + 15 

- 7 
- 5' 

and this is equa l to .!2....±....l when n = 6 and r = 4. 
r + 1 

4-element subsets of {1,2, ... ,6} Smallest members 

11 ,2,3,4} 

11 ,2,3,5} 

11,2,3,6} 

11,2,4,5) 

11,2,4,6) 

{1,2,5,6) 

{1 ,3,4,5 ) 

{1 ,3,4,6) 

11 ,3,5,6) 

11 ,4,5,6) 

{2,3,4,5) 2 

12,3,4,6) 2 

{2,3,5,6) 2 

12,4,5,6) 2 

13,4,5,6) 3 

Table 16.1 

Write N" = 11, 2, ... , n). To eva luate F(n,r), it is clear that we need to 

find out first 

1. wh ich numbers in N" could be the sma ll est member of an r-element 

subset of Nn (in the above example, these are 1, 2, 3 but not 4, 5, 

6), and 

2. how many times such a sma llest member occurs (in the above 
example, '1' occurs 10 times, '2' 4 times and '3' once); 

and then sum these smallest members up, and finally divide the sum 

by ( ~) , the number of r-element subsets of Nn, to obta in the 'average'. 

The last r elements (according to the magnitude) of the set N" are: 

n - r + 1, n - r +2, ... , n - r + r(=n) 

It follows that ' n - r + 1' is the largest possible number to be the 

sma llest member of an r-element subset of Nn. Hence 1, 2, 3, ... , 

n- r + 1 are all possible numbers which could be 'smallest members'. 

Let k E 11, 2, 3, ... , n - r + 1 ). Our next task is to find out 

how many times 'k' occurs as the 'sma llest member'. To form an 

r-element subset of N"containing 'k' as the smallest member we simply 

form a (r - 1 )-element subset from the (n - k)-element set lk + 1, 

k + 2, ... , n) (and then add 'k' to it). The number of (r - 1 )-element 

subsets of lk + 1, k + 2, ... , n) is given by (~ ~; ) .Th u s, 'k' occurs 

( 
n- k) r _ 

1 
times as the 'smallest member'. Let I. denote the sum of all 
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these 'sma llest members'. Then, as k = 1, 2, ... , n - r + 1, we have 

L = 1 ( n- 1) + 2( n- 2) + 3( n- 3) + + (n _ r + 1 l( n- (n- r + 1 )) 
r-1 r-1 r-1 ... r-1 

( r-1) (n -3 ) (n-2) (n-1) = (n - r + 1 ) r - 1 + ... + 3 r - 1 + 2 r - 1 + 1 r - 1 

( 
r - 1) ( n - 3) ( n - 2) ( n - 1) 

= r-1 + ... + r-1 + r-1 + r-1 

( 
r - 1) ( n - 3) ( n - 2) 

+ r-1 + ... + r-1 + r-1 

( 
r - 1) ( n - 3) 

+ r-1 + ... + r-1 

I 
n - r + 1 rows of 

summands 

+ ( r- 1) 
r - 1 

Now by applying (84) to each summand above except the last 

one and noting that {; ~ ~) = ( ~ ) , I. can be simplified as 

L= ( ~ ) + ( n ; 1 ) + ... + ( ~ ) 

n- r + 1 

By applying (84) once aga in, we have 

I.=(n+1) 
r + 1 · 

Finally, by definition of F(n, r), it follows that 

F(n, r) = I. + ( ~ ) = ( ~ : 1
1

) + ( ~ ) 

as desired. M' 
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