Generalized Mersenne Numbers and Primitive Pythagorean Triples

Tom Moore

Abstract

The famous Mersenne numbers $M_n = 2^n - 1$ are generalized and questions regarding whether these numbers can be connected to primitive Pythagorean triples are raised and answered.

The Mersenne numbers, named after the priest Marin Mersenne (1588-1648) who was a correspondent of Fermat, are defined by $M_n = 2^n - 1$ for all positive integers n. These numbers are justly famous because the largest known prime at any time is usually a Mersenne number. In this article we generalize them to numbers of the form $M_{k,s} = 2^k - s^2$ for positive integers k and odd positive integers k. We may refer to these numbers as Mersenne numbers of order k, so that a Mersenne number of order k is the usual Mersenne number described above.

A primitive Pythagorean triple (PPT) is a triple of positive integers (a,b,c) satisfying $a^2 + b^2 = c^2$ as well as gcd(a,b) = 1. It has been known since the time of the ancient Greeks (Euclid's Elements, Book X, Prop. 29) that a PPT is completely determined by parameters m and n that are unequal positive integers of opposite parity such that gcd(m,n) = 1. Indeed, we have for any PPT (a,b,c) that $a = 2mn, b = m^2 - n^2, c = m^2 + n^2$ for appropriate m and n, provided m > n. Without loss of generality we are assuming that a is the even leg and b is the odd leg.

We can provide two infinite families of PPTs whose odd legs are Mersenne numbers as follows. Set $m = 2^k$ and n = 1 to get $b = 2^{2k} - 1 = M_{2k}$. Alternatively, set $m = 2^k$ and $n = 2^k - 1$ to get $b = 2^{k+1} - 1 = M_{k+1}$.

We can find infinitely many PPTs whose sum of legs a + b is a Mersenne number. Set $m = 2^k$ and $n = 2^k - 1$ so that $a + b = 2^{k+1}(2^k - 1) + 2^{2k} - (2^k - 1)^2 = 2^{2k+1} - 1 = M_{2k+1}$.

The next two results generalize the previous ones.

Fix s^2 to be the square of an odd positive integer. We can prove that there are infinitely many PPTs with odd leg of the form $2^t - s^2 = M_{t,s}$. Simply let $m = 2^k$ and n = s with k chosen so that $2^k > s$. Then $(2^{2k} - s^2, s \cdot 2^{k+1}, 2^{2k} + s^2)$ is a PPT with odd leg $M_{2k,s}$. This is easily verified.

Teaching Sampling and Hypothesis Testing

Let s be a fixed odd integer. Are there infinitely many PPTs whose sum of legs is a generalized Mersenne number of order s? The affirmative answer is obtained as follows. Let $m = 2^k$ and $n = 2^k - s$. Then $a + b = 2^{k+1}(2^k - s) + 2^{2k} - (2^k - s)^2 = 2^{2k+1} - s^2 = M_{2k+1.s}$.

Next we show that the product bc of the odd leg and hypotenuse of a PPT can be a Mersenne number of order s^2 infinitely often. To see this, for fixed s, let $m=2^k$ and n=s with $2^k>s$ to get $bc=(2^{2k}-s^2)(2^{2k}+s^2)=2^{4k}-s^4=M_{4k-s^2}$.

Now, suggested by our investigations using Mersenne numbers of order s, we stray slightly and consider numbers of the form $N_{k,s} = 2^k + s^2$ for fixed odd integer s and positive integers k. We can show that, given any such s, there is at least one PPT with odd leg $N_{k,s}$ for some k. Put $m = \frac{3+s^2}{2}$ and $n = \frac{1+s^2}{2}$. These are both integers and, because they are consecutive integers, they are of opposite parity and relatively prime. Thus they generate a PPT with odd leg

$$m^2 - n^2 = \left(\frac{3+s^2}{2}\right)^2 + \left(\frac{1+s^2}{2}\right)^2 = \frac{8+4s^2}{4} = 2+s^2 = N_{1,s}$$
 as desired.

Finally, we leave an exercise for the reader. Can both the odd leg and the hypotenuse of a PPT be Mersenne numbers?

The author is Professor Emeritus of Mathematics at the Conant Science and Mathematics Center, Bridgewater State University.

