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4. Subsets and Arrangements. 

Given a set 5 of 10 objects, how many 3-element subsets of 

S are there? If, further, the 3 elements chosen are to be arranged 

in a row, where the ordering counts, how many ways can this 

be done? In this article, our attention will be focused on the 

aboved two basic counting problems. We shall see how the 

Multiplication Principle (MP) that we learned in Part (1) of the 

article can be used to solve the above problems, and how 

(MP) can be incorporated with the Addition Principle (AP) to 

enable us to solve more complicated problems. 

Consider the 4-element set IN
4 

= !1, 2, 3, 4}. How many 

subsets of IN
4 

are there? This question can be answered readily 

by listing all the subsets of IN
4

• Table 1 displays all the r-element 

subsets of IN
4

, where r = 0, 1, 2, 3, 4. The numbers of r
element subsets (0 r 4) are recorded on the right hand 

column of the table. 

Subsets of N
4 

number 

0-element 0 

1-element {1), {2), {3), {4} 4 

2-element {1, 2), {1, 3), {1, 4), {2, 3), {2, 4), {3, 4} 6 

3-element {1, 2, 3}, {1, 2, 4), {1, 3, 4), {2, 3, 4} 4 

4-element {1, 2, 3, 4} 1 

Table 1. 

Numbers of this kind (i.e., 1, 4, 6, 4, 1) are so useful and 

important that mathematicians had introduced special symbols 

to denote them. 

Given a positive integer n, let 

INn= {1, 2, .. In). 

For r = 0, 1, ... , n, let ( ~) denote the number of r-element 

subsets of INn. Thus, Table 1 tells us that 

(~) = 1, (~) = 4, (~) = 6, (;) = 4 and(:)= 1. 

The symbol ( ~) is read 'n choose r'. Some other symbols for 

this quantity include en and nc. 
r r 

What is the value of ( ~ ), the number of 2-element subsets 

of INs = {1, 2, 3, 4, 5}? By listing all the 2-element subsets of 

INs as shown below: 

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, 

{2, 5}, {3, 4}, {3, 5}, {4, 5}, 

we see that there are '10' in number. Thus, by definition, 

(~) = 10. 

When n is large, it would be tedious to list all the r-element 

subsets of INn just to determine what the value of ( ~) is. Is 

there a more economical way to find (~)? 
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Before answering this question, let us consider a different but 

related problem. How many ways are there to arrange any two 

elements of IN
4 

= {1, 2, 3, 4} in a row? All such arrangements 

are shown below: 

12, 13, 14, 21, 23, 24, 31, 32, 34, 41, 42, 43. 

Thus there are '12' ways to do so. Indeed, we can get the 

answer easily without listing all such arrangements. We observe 

that there are '4' ways (choosing 1, 2, 3 or 4) to fill the 1st 

position, and '3' ways to fill the 2nd position. Thus, by (MP), 

the desired number of ways is 4 ·3 = 12, which agrees with 

what we have obtained. 

In general, how many ways are there to arrange any r elements 

of INn, where 0 r n, in a row? 

1st 2nd 3rd rth 

I t I t I I t I 

n n- 1 n- (r- 1) 
choices choices choices 

Consider the r spaces shown in the above diagram. We wish 

to choose r elements from {1, 2, ... , n} to fill the r spaces, 

where the orderings of elements count. There are n choices for 

the 1st space. After fixing one in the 1st space, there are n - 1 

choices for the 2nd space. After fixing one in the 2nd space, 

there are n - 2 choices for the 3rd space, and so on. After 

fixing one in (r- 1)th space, there are n - (r- 1) choices for 

the rth space. Thus, by (MP), the number of ways to arrange 

any r elements from INn in a row is given by 

n(n- 1)(n- 2) ... (n- (r- 1)). 

For convenience, let us call an arrangement of any r elements 

from INn an r-permutation of INn, and denote by P~ the number 

of r-permutations of INn. Thus, we have 

P~ = n(n- 1)(n- 2) ... (n- r + 1) (1) 

For simplicity, given a positive integer n, define n! to be the 

product of the n consecutive integers n, n- 1, ... , 3, 2, 1; that 

is, 

n! = n(n- 1) ... 3-2-1. 

Thus 4! = 4·3·2·1 = 24. The symbol 'n!' is read 'n factorial'. 

By convention, we define 0! = 1. 

Using the 'factorial' notation, we now have 

That is, 

P~ = n ( n - 1) ... ( n - r + 1 ) 
n(n- 1) ... (n- r+ 1)(n- r)(n- r-1) ... 2·1 

(n - r)(n - r - 1 ) ... 2 ·1 
n! 

(n - r)! 

pn = ~n_!~ 
r (n - r)! 

(2) 



When n = 4 and r = 2, we obtain 

p4 = __ 4_! -=_±!_= 4.3.2.1 = 4·3 = 12 
l (4- 2)! 2! 2.1 I 

which agrees with what we found before. 

Consider two extreme cases when r = 0 and r = n respectively. 

When r = 0, by (2), 

n n! n! 
Po= (n- 0)! =nr= 1. 

(How could this be explained?) When r = n, an r-permutation 

of JN" is simply called a permutation of JN". Thus, by (2) and 

that 0! = 1, the number of permutations of JN" is given by 

P"= _ n_! -=~ = nl 
n (n - n)! 0! · 

(3) 

Problem 4.1. Show that for 1 n, 

("I) pn+1 _ p" p" 
r - r + r r-1; 

( .1.1) p"+
1 

- I (P" P""1 P' ) r - r. + r r-1 + r-1 + ... + r-1 • 

We shall now return to the problem of determining the value 

of ( ~ ). The number P~ of r-permutations of JN" is given by (2). 

Let us count this number in a different way. To obtain an 

r-permutation of JN", we may proceed in the following manner: 

first select an r-element subset of JN"' and then arrange the 

r elements of the subset in a row. The number of ways for the 

first step is, by definition, ( ~ ), while that for the second step 

is, by (3), r!. Thus, by (MP), 

p; = (~)-(r!). 

Hence, by (2), 

(4) 

When n = 5 and r = 2, we have, by (4), 

(5) 5! 5! 
2 = 2!(5 - 2)! ~= 10

' 

which agrees with what we obtained before. Note that, in 

particular, we have(;) = 1 and (~) = 1. By (4), we can now 

compute the value of(~) without listing all the r-element subsets 

of JN"" 

We define P; (respectively,(~)) as the number of r-permutations 

(respectively, r-element subsets) of JN" = !1, 2, ... , n}. Actually, 

P; (respectively, ( ~ )) can be defined as the number of 

r-permutations (respectively, r-element subsets) of any n-element 

set 5, since it is the number but not the nature of the elements 

in the set that counts. Any r-element subset of 5 is also called 

an r-combination of 5. Thus, the quantity ( ~) is the number of 

r-combinations of 5. 

Problem 4.2. Show that 

(i) (~) = (n ~ r), where 0 r n· 
I 

(ii) (~) = (~_-;) + (n ~ 1), where 1 r n- 1. 

5. Applications. 

Having introduced the concepts of r-permutations and 

r-combinations of an n-element set, and deriving the formulae 

for P; and ( ~ ), we shall now give some examples to illustrate 

how these can be applied. 

Example 5.1. 

There are 4 girls and 5 boys in a class, which include two 

particular boys A and 8, and one particular girl G. Find the 

number of ways to arrange them in a row in each of the 

following cases: 

(i) There are no restrictions; 

(ii) A and 8 are adjacent; 

(iii) G is at the centre, A at her left (need not be adjacent) and 

8 at her right. 

Solution. 

(i) This is the number of permutations of the 9 children. 

The answer is 9!. 

(ii) Treat !A, 8} as a single entity. The number of ways to 

arrange the remaining 7 children together with this entity is 

(7 + 1)!. But A and 8 can permute themselves in '2' ways. 

Thus the desired number of ways is, by (MP), 2·8!. 

(iii) 

® 

As shown above, A has '4' choices and 8 also has '4' choices. 

The remaining 6 children can be placed in 6! ways. By (MP), 
the desired number of ways is 4·4·6!. 

Problem 5.1. (Continuation of Example 5.1) 

(iv) A and 8 are at the two ends; 

(v) G is at the centre and adjacent to A and 8; 

(vi) A, 8, and G form a single block (i.e., there is no other 

child between any two of them); 

(vii) All girls form a single block; 

(viii) All girls form a single block and all boys form a single 

block; 

(ix) No two of A, 8 and G are adjacent; 

(x) All boys form a single block and G is adjacent to A; 

(xi) Boys and girls alternate; 

(xii) G is between A and 8 (need not be adjacent). 

Example 5.2. 

Find the number of integers between 2000 and 5000 in which 

no digit is repeated in each of the following cases: 
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(i) There are no additional restrictions; 

(ii) The integers are even. 

Solution. Let abed be a required integer. 

(i) As shown in the diagram below, a has 3 choices 

(i.e., 2, 3, or 4), say a = 2. 

{2, 3, 4} 

Since no digit is repeated, a way of forming 'bed' corresponds 

to a 3-permutaion from the 9-element set (0, 1, 3, 4, ... , 9}. 

Thus the required number of integers is 

3·Pi. 

(ii) Again, a = 2, 3, or 4. We divide the problem into two 

cases. 

Case (1) 

a = 3 (odd) 

In this case, d has '5' choices (i.e., 0, 2, 4, 6 or 8), say d = 4. 

Then a way of forming 'be' is a 2-permutation from the 8-

element set (0, 1, 2, 5, 6, 7, 8, 9}. Thus the required number 

of integers is 5.P~. 

Case (2) 

a = 2 or 4 (even) 

Solution. 

(i) This is the number of 7-element subsets of a 17 -element 

set. By definition, the desired number is ( 
1
;). 

(ii) This is the number of ways to form a 7-member committee 

from the 9 japanese. Thus the desired number is ( ~). 

(iii) We first select a member from the 8 Singaporeans and 

then select the remaining 6 from the 9 japanese. By (MP), 

the desired number is ( ~)( ~) = 8( ~). 

(iv) Obviously, the desired number is ( ~) = 8. 

(v) There are 4 cases; namely, r Singaporeans, where r = 0, 1, 

2, 3. Thus, by (AP), the desired number is 

C) + (~)(~) + (~)(~) + (~)(!)· 

Example 5.4. 

As shown in Example 2.1 (Part (1 )), the number of 6-digit 

binary sequences is 26
• How many of them contain exactly 

two O's (e.g., 001111, 101101, ... )? 

Solution 

Forming a 6-digit binary sequence with two O's is the same as 

choosing two spaces from the following 6 spaces into which 

the two O's are put (the rest are then occupied by 1's) as 

shown below 

(1) (2) (3) 

0 
t 
0 

(4) 

0 
t 
0 

(5) (6) 

In this case, d has '4' choices (Why?), and the number of ways Thus the number of such binary sequences is ( ~ ). 
to form 'be' is P~. The required number of integers is 2.4.P~. 

By (AP), the desired number of integers is 

Problem 5.2. (Continuation of Example 5.2) 

(iii) The integers are odd; 

(iv) The integers are divisible by 5; 

(v) The integers are greater than 2345. 

Example 5.3. 

At a japan-Singapore conference held in Singapore, there are 

17 participants from the two countries. Among them, 9 are 

japanese. 

In how many ways can a 7-member committee be formed 

from these participants in each of the following cases: 

(i) there are no restrictions? 

(ii) there is no Singaporean in the committee? 

(iii) there is exactly one Singaporean in the committee? 

(iv) the committee consists of Singaporeans? 

(v) there are at most three Singaporeans in the committee? 
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Example 5.5. 

Figure 5.1 shows 10 distinct points on the circumference of a 

circle. 

(i) How many chords of the circle are there formed by these 

points? 

(ii) If no 3 of the chords are concurrent within the circle, how 

many points of intersection of these chords are there within 

the circle? 

1 10 

2 9 
8 

3 

4 7 

6 
5 

Figure 5.1 

Solution 

(i) Every chord joins two of the ten points, and every two of 

the ten points determine a unique chord. Thus the required 

number of chords is C~). 



(ii) 

Every point of intersection of two chords corresponds to four 

of the ten points, and every four of the ten points determine 

a point of intersection. Thus the required number of points of 
. . . (10) mtersect1on IS 4 . 

Problem 5.3. 

In how many ways can a committee of 5 be formed from a 

group of 11 people consisting of 4 teachers and 7 students if 

(i) the committee must include exactly 2 teachers? 

(ii) the committee must include at least 2 teachers? 

(iii) a particular teacher and a particular student are both in 

the committee? 

Problem 5.4. 

How many rectangles are there in the following 5 x 8 

rectangular grid? 

Problem 5.5. 

The following figure shows 15 distinct points chosen on the 

sides of ABC. 

(i) How many triangles can be formed from these points? 

(ii) How many line segments are there joining any 2 points on 

different sides? 

(iii) If no 3 of these line segments are concurrent, find the 

number of points of intersection of these line segments 

within ABC. 
A 

c, b, 
b] 

b2 
b, 

8~-~~-~~~---' C 

Problem 5.6. 

The number 5 can be expressed as a sum of 3 natural numbers, 

taking order into account, in 6 ways; 

5=1+1+3 

=3+1+1 

= 2 + 1 + 2 

1 + 3 + 1 

1 + 2 + 2 

2+2+1. 

In how many ways can 11 be written as a sum of 5 natural 

numbers, taking order into account? 

Problem 5.7. 

Four people A, B, C and 0 can be paired off in the following 

three different ways: 

(1) {!A, B), (C, O}}, 

(2) {!A, C), (B, 0}}, 

(3) {(A, o}, (B, cl}. 

In how many ways can 10 people be paired off? M' 

Answers 

Problem 5.1. 

(iv) 2.7! (v) 2.6! (vi) 3!7! 

(ix) 6!7.6.5 (x) 2.4!4! (xi) 4!5! 

(vii) 4!6! (viii) 4!5!2! 

(xii) 2.4.5.6.7.8.9 

Problem 5.2. 

(iii) 2.5P~ + 4.P~ = 14.P~ 
8 8 

(iv) 2.3.P 2 = 6.P 2 

9 8 7 9 8 7 
(v) 2.P3 + 6.P2 + 5.P1 + 4 or 3.P3 - 2.P2 - 2.P1 - 3 

Problem 5.3. 

(i) (~)(i) 

(ii) (~)(i) + (~)(;) + (:)( ~) 

(iii) G) 
Problem 5.4. 

(~)(~) 

Problem 5.5. 

(i) 6·4·5 + ( ~)9 + (~)11 + (Dw 
(ii) 6-4 + 4·5 + 5·6 

(iii) ( ~)(~) + (~)(D + (~)( ~) 

+ ( ~)-4·5 + (~)·5·6 + (~)·6·4 

Problem 5.6. 

C2) 
Problem 5.7 

9.7.5.3.1 or C2°)(~)(~)(~)(~) 
5! 
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