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W 
hat is a dynamical system? Basically, any 

process which evolves with time is an 

exaniple of a dynamical system. Such 

systems occur in all branches of science and, indeed, in 

every aspect of our lives. Weather patterns are examples 

of huge dynamical systems: the temperature, barometric 

pressure, wind direction and speed and amount of 

precipitation are all variables which change with time in 

this system. The economy is another example of a 

dynamical system: the rise and fall of the Straits Times 

Industrials Index is a simple illustration of how the system 

fluctuates with time. The evolution of the planets in the 

solar system and simple chemical reactions are examples 

of other dynamical systems. 

The basic goal of studying dynamical systems is to predict 

the eventual outcome of the evolving process. Namely, 

if we know in complete detail the past history of a process 

that is evolving with time, can we deduce the long term 

behaviour of the system? The answer to this question is 

sometimes yes and sometimes no. Obviously, prediction 

of weather systems and stock market fluctuations cannot 

be made in the long term. On the other hand, we are 

sure that the sun will rise tomorrow morning and no 

extraordinary chemical reaction will take place when 

we add cream to our coffee. 

What makes some dynamical systems predictable and 

others unpredictable? From the above examples, it would 

seem that dynamical systems which involve a huge 

number of variables I ike the weather systems or the 

economy are unpredictable, whereas systems with fewer 

variables are easier to understand. However, while this 

may be true in some cases, it is by no means true in 

general. Even the simplest of dynamical systems 

depending on only one variable may yield highly 

unpredictable and essentially random behaviour. The 

reason for this is the mathematical notion of chaos. 

An Example from Biology 

Suppose that there is a single species whose population 

grows and dwindles over time in a controlled 

environment. Ecologists have suggested a number of 

mathematical models to predict the long time behaviour 

of this population. Here is one of their simplest models. 

Suppose that we measure the population of the species 

at the end of each generation. Let us write Pn for the 
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proportion of population after generation n with 

0 ::; Pn::; 1. The model of the growth of this population 

is 

where k is some constant that depends on ecological 

conditions such as the amount of food present. This 

simple quadratic formula is a discrete system with 

variable P
11

• Given Pn and k, we can compute Pn+l exactly. 

In Table 1, we have listed the populations predicted by 

this model for various values of k. When k is small, the 

fate of the population seems quite predictable. For 

k = 0.5, the population dies out, whereas for k = 1 .2, 

it tends to stablize or reach a definite limiting value. 

Fork= 3.1, the limiting values tend to oscillate between 

two distinct values. For k = 3.4, the limiting values 

oscillate among four values. And finally, for k = 4, the 

initial value P
0 

= 0.5 leads to disappearance of the species 

after only two generations; whereas P
0 

= 0.4 leads to a 

population count that seems to be completely random. 

pn+l = kPn( 1 - pn) 

k 
0.5 1.2 3.1 3.4 4.0 4.0 

.5 .5 .5 .5 .4 .5 

.125 .3 .775 .85 .96 1 

.055 .252 .540 .434 .154 0 

.026 .226 .770 .835 .520 0 

.013 .210 .549 .469 .998 0 

.006 .199 .768 .847 .006 0 

.003 .191 .553 .441 .025 0 

.002 .186 .766 .838 .099 0 

.001 .181 .555 .461 .358 0 

.000 .178 .766 .845 .919 0 

.000 .176 .556 .446 .298 0 

.000 .174 .765 .840 .837 0 

.000 .172 .557 .457 .547 0 

.000 .171 .765 .844 .991 0 

.000 .170 .557 .448 .035 0 

.000 .170 .765 .841 .135 0 

.000 .169 .557 .455 .466 0 

.000 .168 .765 .843 .996 0 

.000 .168 .557 .450 .018 0 

.000 .168 .765 .851 .070 0 

.000 .168 .557 .455 .261 0 

.000 .168 .765 .843 .773 0 

Table 1 



This is the unpredictable nature of this process. Certain k-values lead to results which are predictable - a fixed or 

periodically repeating limiting values. But other k-values lead to results which are random . 

Let us again consider the system when k = 4. We choose three different initial values P0 
111 = 0.1, P0 

121 = 0.10000001, 

P
0 

131 = 0.10000002. The difference between any pair of them is very small. However after the 52nd iteration, there 

are big differences between three values of P
52 

(See Table 2). Hence a small change in the state of the system at 

time zero produces a big change in position after a time. In such a case, we say the system is chaotic. 

n pn+l = 4Pn(1 - pn) 

P
0

1n = 0.1 
(2 ) (31 

0 P
0 

= 0.100,000,01 P
0 

= 0.1 OO,OOO,Q2 

1 0.36 0.360,000,003,2 0.360,000,006,4 

2 0.9216 0.921,600,035,8 0.921,600,071,7 

3 0.289,013,76 0.289,013,639,1 0.289,013,518,2 

... ...... 

10 0.147,836,559,9 0.147,824,449,9 0.147,812,518,2 

... . ..... 

so 0.277,569,081,0 0.435,657,399,7 0.055,005,377,6 

51 0.802,094,386,2 0.983,129,834,6 0.207,919,144,2 

52 0.634,955,927,4 0.066,342,251,5 0.658,755,094,6 

Table 2 

The list of successives, P
0

• P,, P
2 
• ... of a point P

0 
is called the orbit of P

0
. Generally when a system is iterated on 

a computer, round-off errors may accun_:1u]ate and lead to major errors in the predictions. Can we then rely on 

our computer? Fortunately by a result known as the Shadowing Lemma, there exists a true orbit that is "close" to 

the pseudo-orbit produced by the computer. 

Lorenz butterfly 

Edward Lorenz is a meteorologist who worked at the Massachusetts Institute of Technology. As a meteorologist, 

he was interested in the phenomenon of atmospheric convection. Here is the phenomenon : the sun heats the 

ground, and therefore the lower layers of atmospheric air become warmer and lighter than that in the higher layers. 

This causes an upward motion of light, warm air and a downward motion of dense, cold air. These motions 

consitute convection. Air is a fluid like water, and it should be described by a point in an infinite-dimensional 

space. By a crude approximation, Lorenz replaced the correct time evolution in an infinite dimension by a time 

evolution in three dimensions, which he could study on a computer. What came out of the computer is the object 

shown in the figure, now known as the Lorenz butterfly (Fig. 3). We have to imagine that the point P representing 

the state of our convecting atmosphere is moving with time along the line drawn by the computer. In the situation 

depicted, the point P starts near the origin 0 of the coordinates, then turns around the right "wing" of the butterfly, 

then a number of times around the left wing, then twice around the right wing, and so on. If the initial position 

of P near 0 was changed just a little bit (so that the difference would not be visible to the naked eye), the details 

of the figure would be completely changed. The general aspect would remain the same, but the number of 

successive turns around the right and left wing would be quite different. This is because - as Lorenz recognized 

- the time evolution of the figure has sensitive dependence on the initial condition. The number of successive 
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turns around the left and right wings is thus erratic, 

apparently random, and difficult to predict. 

Figure 3 

The Lorenz time evolution is not a realistic 

description of atmospheric convection, but its study 

nevertheless gave a very strong argument in favour 

of unpredictability of the motions of the atmosphere. 

As a meteorologist, Lorenz could thus present a 

valid excuse for the inability of his profession to 

produce reliable long-term weather predictions. 

Conclusion 

Chaos is a feature of natural phenomena which 

has many applications in engineering, biology and 

physics. We would like to witness its role, at least 

qualitatively, in economics, sociology, and the 

history of mankind. Such disciplines indeed offer 

problems of greater significance to us than weather 

predictions . • 
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