

Many of the secondary pupils are aware of the following two facts in geometry:

(1) If *D*, *E* and *F* are the midpoints of the sides *BC*, *CA* and *AB* respectively of $\triangle ABC$ (see Figure 1), then the line segments *AD*, *BE* and *CF* (called the medians of $\triangle ABC$) meet at a common point. We say that the medians of $\triangle ABC$ are *concurrent*.

(2) Suppose that, on the other hand, *D* and *E* are the midpoints of *BC* and *CA* respectively. Join *A* and *D*, and *B* and *E*, and assume that *AD* and *BE* meet at *S* as shown in Figure 2. Join *C* and *S*, and extend *CS* to meet *AB* at *F*. Then is *F* the midpoint of *AB*.

Figure 2

In this article, we shall introduce a famous and important result in geometry which generalizes the facts mentioned above. This result is known as Ceva's theorem, in honour of the Italian mathematician Giovanni Ceva (1648-1734) who published it in 1678.

THE THEOREM

In a triangle *ABC*, any line segment joining a vertex to a point on its opposite side (extended if necessary) is called a *cevian* of $\triangle ABC$. Figure 3 shows three cevians *AP*, *BQ* and *CR*. Suppose that they are concurrent. What can be said about the relationship among the six line segments *AR*, *RB*, *BP*, *PC*, *CQ* and *QA*?

Figure 3

Ceva answered this question by establishing the following beautiful result.

Ceva's Theorem If the cevians *AP*, *BQ* and *CR* of $\triangle ABC$ are concurrent, then

$$\frac{AR}{RB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} = 1 \tag{1}$$

There are different proofs of this theorem. The proof which we are going to present here makes use of the notion of area. For this purpose, given ΔXYZ , we shall denote by (*XYZ*) its area.

Suppose that the cevians AP, BQ and CR meet at S as shown in Figure 3. We then observe that

$\frac{AR}{RB} = \frac{(ACR)}{(BCR)} = \frac{(ASR)}{(BSR)}$	
$AR \cdot (BCR) = RB \cdot (ACR)$	(2)

Thus and

 $AR \cdot (BSR) = RB \cdot (ASR) \tag{3}$

(2) and (3) give

$$AR \cdot ((BCR) - (BSR)) = RB \cdot ((ACR) - (ASR)),$$

which implies that

AR	_	(ACS)	(4)
RB	=	(BCS)	

Likewise, we have

BP PC

$$=\frac{(BAS)}{(CAS)}$$
(5)

(6)

and

 $\frac{CQ}{OA} = \frac{(CBS)}{(ABS)}$

From (4), (5) and (6) we obtain

$$\frac{AR}{RB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} = 1$$

as required.

Let us show an application of Ceva's theorem.

Example 1 In Figure 4, the cevians *AD*, *BE* and *CF* of $\triangle ABC$ meet at *P*. Given that 2BD = 3DC, 3AE = 4EC and (APF) = 72, find the area (*BPF*).

As AD, BE and CF are concurrent, by Ceva's theorem, we have

$$\frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA} = 1.$$

Thus, by assumption

$$\frac{AF}{FB} \cdot \frac{3}{2} \cdot \frac{3}{4} = 1,$$

and so
$$\frac{AF}{FB} = \frac{8}{9}.$$

Since
$$\frac{AF}{FB} = \frac{(APF)}{(BPF)},$$

$$(BPF) = (APF) \cdot \frac{r_B}{AF} = 72 \cdot \frac{9}{8} = 81$$

THE CONVERSE

Ceva's theorem states that if the three cevians of $\triangle ABC$ shown in Figure 3 are concurrent, then equality (1) holds. Does the converse of Ceva's theorem hold? That is, if *P*, *Q* and *R* are points on the sides *BC*, *CA* and *AB* respectively such that equality (1) holds, are then the cevians *AP*, *BQ* and *CR* always concurrent? The answer is in the affirmative as shown below.

The Converse of Ceva's Theorem If *P*, *Q* and *R* are points on the sides *BC*, *CA* and *AB* of ΔABC respectively such that

$$\frac{AR}{RB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} = 1 \tag{7}$$

then AP, BQ and CR are concurrent.

20 Mathematical EDLEY MARCH 1996 To prove this result, suppose that the cevians *AP* and *BQ* meet at *S*. Join *C* and *S*, and extend *CS* to meet *AB* at *R'* as shown in Figure 5. Our aim is to show that R' = R.

Figure 5

Since *AP*, *BQ* and *CR*' are concurrent, by Ceva's theorem, we have

(8)

$$\frac{AR'}{R'B} \cdot \frac{BP}{PC} \cdot \frac{CQ}{OA} = 1$$

It follows from (7) and (8) that

$$\frac{AR'}{R'B} = \frac{AR}{RB}$$

which in turn implies that R and R' coincide. This proves that AP, BQ and CR are concurrent.

We note that Ceva's theorem and its converse are also valid even if a cevian joins a vertex to a point on its opposite side extended as shown in Figure 6.

At the beginning of this article, we pointed out that the three medians of a triangle are always concurrent. We shall now see that this result is an immediate consequence of the converse of Ceva's theorem. Indeed, as shown in $\triangle ABC$ of Figure 1, we have AF = FB, BD = DC and CE = EA, and so

$$\frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA} = 1.$$

Thus, the medians *AD*, *BE* and *CF* are concurrent by the converse of Ceva's theorem. We call this common point (point *G* in Figure 1) the *centroid* of ΔABC . The centroid is one of the most important points associated with a triangle. In what follows, we

shall introduce another two important points associated with a triangle.

Example 2 In $\triangle ABC$ of Figure 7, the cevians *AP*, *BQ* and *CR* are perpendicular to *BC*, *CA* and *AB* respectively. They are called the *altitudes* of $\triangle ABC$. We shall show by the converse of Ceva's theorem that the three altitudes are concurrent.

Consider the right-angled $\triangle ARC$. We have:

$$\cos A = \frac{AR}{CA} \, \prime$$

i.e., $AR = CA\cos A$.

Likewise, we have

$$RB = BC \cos B,$$

$$BP = AB \cos B,$$

$$PC = CA \cos C,$$

$$CQ = BC \cos C,$$

$$QA = AB \cos A.$$

Thus

and

$$\frac{AR}{RB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{OA} = \frac{CA \cos A}{BC \cos B} \cdot \frac{AB \cos B}{CA \cos C} \cdot \frac{BC \cos C}{AB \cos A} = 1.$$

Hence, by the converse of Ceva's theorem, the altitudes *AP*, *BQ* and *CR* are concurrent. We call this common point (point *H* of Figure 7) the *orthocentre* of ΔABC .

Before we proceed to introduce another 'centre' of a triangle, let us recall a formula for the area of a triangle. Consider $\triangle ABC$ of Figure 8. To find the area (*ABC*), we draw the altitude *BY* as shown. Now

$$(ABC) = \frac{1}{2} CA.BY$$

 $BY = AB \sin A$.

and

Thus we have

$$(ABC) = \frac{1}{2} CA.AB \sin A \tag{9}$$

Mathematical 21

Figure 8

Example 3 In $\triangle ABC$ of Figure 9, the cevians *AX*, *BY* and *CZ* are the internal bisectors of the angles *A*, *B* and *C* respectively. We shall show that these three cevians are concurrent.

Observe that

$$\frac{AZ}{ZB} = \frac{(ACZ)}{(BCZ)}$$

and by (9),

Thus

i.e.,

and

Similarly,

 $(AZC) = \frac{1}{2} \cdot CA \cdot CZ \cdot \sin\left(\frac{c}{2}\right),$ $(BZC) = \frac{1}{2} \cdot BC \cdot CZ \cdot \sin\left(\frac{c}{2}\right),$ $\frac{AZ}{ZB} = \frac{(AZC)}{(BZC)} = \frac{CA}{BC}$ $\frac{AZ}{ZB} = \frac{CA}{BC} \cdot$ $\frac{BX}{XC} = \frac{AB}{CA}$ $\frac{CY}{YA} = \frac{BC}{AB} \cdot$

It follows that

$$\frac{AZ}{ZB} \cdot \frac{BX}{XC} \cdot \frac{CY}{YA} = \frac{CA}{BC} \cdot \frac{AB}{CA} \cdot \frac{BC}{AB} = 1$$

Hence, by the converse of Ceva's theorem, the internal angle bisectors AX, BY and CZ are concurrent. This common point (point *I* of Figure 9) is called the *incentre* of $\triangle ABC$.

We shall show another application of the converse of Ceva's theorem.

Example 4 In the parallelogram *ABCD* of Figure 10, *E*, *F*, *G* and *H* are points on *AB*, *BC*, *CD* and *DA* respectively such that *EG* // *BC* and *HF* // *AB*. Let *P* be the point of intersection of *EG* and *HF*. Show that the lines *AF*, *CE* and *DP* are concurrent.

Figure 10

Join *E* and *F*, and extend *DP* to meet *EF* and *AB* at *L* and *K* respectively as shown in Figure 11. Let *N* be the point of intersection of *EG* and *AF*, and *M* the point of intersection of *CE* and *HF*.

Figure 11

Observe that *EM*, *FN* and *PL* are three cevians of ΔEFP , and to show that *AF*, *CE* and *DP* are concurrent is the same as to show that the cevians *EM*, *FN* and *PL* of ΔEFP are concurrent.

Note that	$\frac{FM}{MP} = \frac{CF}{EP}$	(ΔFMC ~ ΔPME)
	$=\frac{GP}{EP}$	
	$=\frac{GD}{EK}$	$(\Delta DPG \sim \Delta KPE)$
	$=\frac{AE}{EK}$	

$$\frac{PN}{NE} = \frac{PF}{EA} \qquad (\Delta PNF \sim \Delta ENA)$$
$$= \frac{EB}{EA},'$$
$$\frac{EL}{LF} = \frac{EK}{PF} \qquad (\Delta ELK \sim \Delta FLP)$$
$$= \frac{EK}{EB} \cdot$$
$$\frac{FM}{MP} \cdot \frac{PN}{NE} \cdot \frac{EL}{LF} = \frac{AE}{EK} \cdot \frac{EB}{EA} \cdot \frac{EK}{EB} = 1.$$

By the converse of Ceva's theorem, *EM*, *FN* and *PL* (and hence *CE*, *AF* and *DP*) are concurrent.

We shall now consider our final example.

and

Thus

Example 5 In a circle *C* with centre *O* and radius *r*, let C_1 , C_2 be two circles with centres O_1 , O_2 and radii r_1 , r_2 respectively, so that each circle C_i is internally tangential to *C* at A_i so that C_1 , C_2 are externally tangential to each other at *A* (see Figure 12). Prove that the three lines OA, O_1A_2 and O_2A_1 are concurrent.

The problem given in Example 5 is actually Question 2 of the 1992 Asian Pacific Mathematical Olympiad. Pang Siu Taur, a secondary student then, took part in the competition and gave a short proof of this problem by applying the converse of Ceva's theorem. We shall now present his proof.

As shown in Figure 13, consider the cevians OA, O_1A_2 and O_2A_1 of ΔOO_1O_2 .

Observe that

$$\frac{OA_1}{A_1O_1} \cdot \frac{O_1A}{AO_2} \cdot \frac{O_2A_2}{A_2O} = \frac{r}{r_1} \cdot \frac{r_1}{r_2} \cdot \frac{r_2}{r} = 1$$

Thus, by the converse of Ceva's theorem, OA_1 , O_1A_2 and O_2A_1 are concurrent.

Mr Hang Kim Hoo obtained his BSc with Honours in Mathematics from NUS and MEd from NTU. His research interest lies in the teaching of Geometry. He has many years of experience in teaching mathematics at secondary schools and is currently a Specialist Inspector for Mathematics at the Ministry of Education. He has been a member of the International Mathematics Olympiad Training Committee since 1990.

Professor Koh Khee Meng obtained his first degree from Nanyang University in 1968 and PhD from Manitoba, Canada, in 1971. He then returned to teach at Nanyang University and he has been with the Department of Mathematics of NUS since 1980. He was the Chairman of the Singapore Mathematical Olympiad Training Committee from 1991 to 1993 and he was awarded the Faculty of Science Mathematics Teaching Award in 1994 and 1995.

Mathematical 23