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Competition Corner 
In this issue we publish the problems of Auckland Mathematical Olympiad 1998, se

lected problems of Ukrainian Mathematical Olympiad 1997 as well as problems of the 39th 
International Mathematical Olympiad held in July 1998 at Taiwan. I would like to thank 
Dr. Chua Seng Kiat, leader of Singapore team at the 1997 International Mathematical 
Olympiad for bringing back these problems. We also present solutions of selected prob
lems of the Byelorrussian Olympiads as well as the problems and solutions of the 38th 
International Mathematical Olympiad which was held in July 1\)96 at Argentina. Please 
send your solutions of the Auckland and the Ukrainian Mathematical Olympiads and the 
39th International Mathematical Olympiad to me at the address given above. All correct 
solutions will be acknowledged. Note solutions that designated as official are solutions 
provided by the organizers of the competitions. 

Auckland Mathematical Olympiad 1998, Division 2 

6. Find all real solutions of the system of equations 

x + y + xy = 11 

x 2 + xy + y 2 = 19 

7. Some cells of an infinite square grid are coloured black and the rest are coloured white 
so that each rectangle consisting of 6 cells (2 x 3 or 3 x 2) contains exactly 2 black cells. 
How many black cells might a 9 x 11 rectangle contain? 

8. Two circles cl and c2 of radii rl and T2 touch a line .e at points Al and A2, as shown 
in the figure below. 

The circles intersect at points M, N. Prove that the circumradius of the triangle A 1M A2 
does not depend on the length of A1A2 and is equal to y'Tlf2. 

9. Let a and {3 be two acute angles such that sin2 a+ sin2 f3 = sin( a+ {3). Prove that 
a+ f3 = 1r /2. 



10. Find all prime numbers p for which the number p2 + 11 has exactly 6 different divisors 
(including 1 and the number itself.) 

Ukrainian Mathematical Olympiad, 1997 (Selected problems) 

1. (9th grade) Consider a rectangular board in which the cells are coloured black and white 
alternately like chess board cells. In each cell an integer is written. It is known that the 
sum of the numbers in every row and every column is even. Prove that sum of all numbers 
in the black cells is even. 

2. (lOth grade) Solve the system of equations in real numbers: 

X1 + X2 + · · · + X1997 = 1997 

xt + x~ + · · · + xt997 = x~ + x~ + · · · + X~997· 

3. {lOth grade) Let d(n) denote the greatest odd divisor of the natural number n. Define 
the function I: N--+ N by l(2n- 1) = 2n, l(2n) = n + 2n/d(n) for all n EN. Find all k 
such that 1(!( ... (1) ... )) = 1997 where I is iterated k times. 

4. {lOth grade) In the space two regular pentagons ABCDE and AEKPL are situated so 
that LDAK = 60°. Prove that the planes (ACK) and (BAL) are perpendicular. 

5. (11th grade) It is known that the equation ax3 + bx2 +ex+ d = 0 with respect to x has 
three distinct real roots. How many roots does the following equation have 

4(ax3 + bx2 +ex+ d)(3ax +b) = (3ax2 + 2bx + c)2? 

6. (11th grade) Let Q+ denote the set all positive rational numbers. Find all functions 
I: Q+--+ Q+ such that for all x E Q+, l(x + 1) = l(x) + 1, and l(x2 ) = (!(x)) 2 • 

7. {11th grade) Find the minimum value of n such that in any set of n integers there exist 
18 integers with sum divisible by 18. 

8. (11th grade) At the edges AB, BC, CD, DA of a parallelepiped ABCDA1B 1C1D1 (not 
necessarily right) points K, L, M, N, respectively, are taken. Prove that the four centres 
of the spheres of A1AKN, B1BKL, C1CLM, D1DMN are vertices of a parallelogram. 

Problems of 39th International Mathematical Olympiad 

1. In the convex quadrilateral ABC D, the diagonals AC and BD are perpendicular and 
the opposite sides AB and DC are not parallel. Suppose that the point P, where the 
perpendicular bisectors of AB and DC meet, is inside ABCD. Prove that ABCD is a 
cyclic quadrilateral if and only if the triangles ABP and CDP have equal areas. 

2. In a competition, there are a contestants and b judges, where b 2 3 is an odd integer. 
Each judge rates each contestant as either "pass" or "fail". Suppose k is a number such 
that, for any two judges, their ratings coincide for at most k contestants. Prove that 

k b -1 
->--. a- . 2b 



3. For any positive integer n, let d(n) denote the number of positive divisors of n (including 
1 and n itself). Determine all positive integers k such that 

for some n. 

d(n2) = k 
d(n) 

4. Determine all pairs (a, b) of positive integers such that ab2 + b + 7 divides a2 b +a+ b. 

5. Let I be the incentre of triangle ABC. Let the incircle of ABC touch the sides BC, 
C A and AB at K, L and M, respectively. The line through B parallel to M K meets the 
lines LM and LK at R and S, respectively. Prove that L.RI S is acute. 

6. Consider all functions f from the set N of all positive integers into itself satisfying 

for all s and tin N. Determine the least possible value of /(1998). 

Solutions of the XLV Byelorrussian Olympiads 1994/95 

Category a 

1. There are 20 rooms in a hotel on a sea beach. The building of the hotel has only one 
storey and all rooms are arranged along one side of the common corridor. The rooms are 
numbered by the integers from 1 to 20 consecutively. A visitor may rent either one room 
for two days or two neighbouring rooms for one day. The cost of a room is $1 per day. 
The sea-bathing season lasts 100 days. It is known that room No. 1 was not rented at the 
first day and room No. 20 was not rented at the last day of the season. Prove that owners 
of the hotel receive at most $1996 during the season. 

Official solution: Draw a 100 x 20 table and colour the cells of this table alternately black 
and white. Write the name of a visitor in the cell corresponding to the day and the number 
of the room he rented. By the given condition, it follows that the name of each visitor 
appears in the white cells as many times as in the black cells. Also the (1, 1) and the 
(100, 20) cells are of the same colour, say white, and are both not marked. Consequently, 
at least two black cells are also empty. Thus the owners can receive at most $1996 during 
the season. 

2(a). After a lesson in mathematics, the Ox-axis and the graph of the function y = 2x 
were left on a blackboard but the Oy-axis and the scale were erased. Give a Euclidean 
construction (using a straight edge and compasses only) for the Oy-axis and the unit of 
the scale. 

(b). Give an Euclidean construction of both axes and the unit of the scale if both axes and 
the scale were erased but the graph of y = 2x and a straight line parallel to the Ox-axis 
were left on the blackboard. 



Solution 2a from Tan Chong Hui, National University of Singapore. 

Choose an arbitrary point P = (a, 2a) on the graph. Construct the line y = 2a+l 
which intersects the curve at (a+ 1, 2a+l ). (This line is parallel to the Ox-axis and P is 
equidistant from this line and the Ox-axis.) This gives the unit of scale. Construct the 
line which is one unit from and is parallel to the Ox-axis. Let its intersection with the 
curve be A. Then the line through A and perpendicular to the Ox-axis is the Oy-axis. 

( 2b) Official solution: Draw three parallel lines so that they are perpendicular to the given 
line and the distances between them are all equal. Let M, K and L denote the intersection 
points of these lines with the graph of y = 2x; let A and N be the. projections of K and 
L onto the leftmost line. We need to construct the intersection point B of M N with the 
desired axis Ox. Let a denote an unknown length of the segment AB, and n = AN, 
m = AM. Let the x-coordinates of M and K be equal to t and t + 8, respectively. Then 
the x-coordinate of Lis equal tot+ 28. We have BM = 2t, BA = 2t+6 , BN = 2t+26 , it 
follows that BA2 = BM · BN or a 2 = (a- m)(a + n), i.e. a = mnf(n- m). In a right 
angled triangle ABC, with LA= 90°, if AD is an altitude, then BC = AB2 /BD. Using 
this, we can construct a segment of length r 2 /m by taking AB =rand BD = m, where 
r is any arbitrary fixed length. Likewise, we can construct r 2 fn. We can also construct 
r 2 /m- r 2 fn and consequently, r 2 /(r2 fm- r 2 /n) = mnf(n- m) = a. Thus we can 
construct a segment of length a. If B E M N and AB = a, we see that B must belong to 
the Ox-axis. Thus, we draw the line that passes through Band is perpendicular toM N. 
This line is the desired Ox-axis. 

3. Find all functions f : lR ---+ JR, satisfying the equality 

f(f(x + y)) = f(x + y) + f(x)f(y)- xy (1) 

for all real x and y. 

Solution by Soh Chong Kian, Raffles Junior College. Also solved by Tan Chong Hui. 

First we prove that f(O) = 0. Suppose that on the contrary that f(O) = c =f. 0. Then 
putting y = 0 in (1), we have 

f(f(x)) = f(x) + f(x)f(O) = (1 + c)f(x). (2) 

If f(x) = 0 then /(0) = 0 contradicting our assumption. Thus f(x) =f. 0 for all x. Next 
putting y = -x = c in (1) and then putting x = 0, y = 0, we have 

f(c) = c + J(c)f( -c)+ c2
, and /(c) = c + c2

. 

Therefore, f(c)f( -c) = 0 which implies f(c) = 0 or f( -c) = 0, a contradiction. Thus 
f(O) = 0. 

From (2) we have f(f(x)) = f(x). Thus (1) reduces to f(x)f(y) = xy. This gives 
f(x) 2 = x 2 . If there exists a =f. 0 such that f(a) =-a, then f(a) = f(J(a)) =!(-a) and 
f(a) 2 = f(a)f(-a) = -a2 . This implies that a= 0, a contradiction. Thus f(x) = x for 
all x. It is easy to see that this function satisfies (1). 



4. Given a triangle ABC with LABC = 3LC AB, let M and N be chosen on side C A so 
that LCBM = LMBN = LNBA. Suppose that X is an arbitrary point on BC. If Lis 
the intersection point of AX and BN, and K is the intersection point of NX and BM, 
prove that the lines K L and AC are parallel. 

Solution by Chan Sing Chun: 

A 

B 

c 
Let LCAB = 0. Then LABC = 30 and LCBM = LMBN = LNBA = 0. We have 
LCNB = 20. Thus NA = NB, CN = CB. In ~XBN, since BM is an angle bisector, 
by Stewart's Theorem XK/KN = XB/BN. Now consider ~AXC with BLN as a 
transversal, by Menelaus' Theorem 

XLANCB 
LA NC BX = -1. 

Since C N = C B, this reduces to f~ i~ = 1. Thus 

XL XB XB XK 
LA - AN - NB - KN' 

The second equality follows from N A = N B. The third equality follows because X K / K N = 
XB/BN by applying Stewart's Theorem in ~XBN. Thus KL is parallel to AN (or AC). 

5. The centre 0 1 of circle S1 lies on a circle 82 with the centre 02. The radius of 82 is 
greater than that of 8 1 . Let A be the intersection point of 8 1 and 0 10 2 • Consider a circle 
8 centred at an arbitrary point X on 82 and passing through A; let Y be the intersection 
point of 8 and 82 (different from A). Prove that all lines XY are concurrent, as X runs 
along 82. 

Official solution: Let rand R denote the radii of circles 8 1 and 82, respectively. Let X be 
an arbitrary point of 82 and Z be the intersection point of the line XY and the line 0 10 2 . 

Since 0 1Y = 0 1A and XY = XA, we see that 01X .i AY. Since L01XB = 90° it follows 
that BXIIAY. Thus ~ZY A is similar to ~ZXB and ~CY A is similar to ~01XB. This 
gives ZA/ZB = Y A/XB = CA/01B = rjR. Consequently, the position of Z does not 



depend on the choice of X. Hence for all choices of X, the lines XY pass through the 
fixed point Z. 

6. Given real numbers a and b, such that the cubic polynomial x3 + v'3( a - 1 )x2 - 6ax + b 
has three real roots, prove that lbl ~ Ia + 11 3 . 

Official solution: Let x1, x2, X3 be the roots of the polynomial x3 + v'3( a- 1 )x2 - 6ax + b, 
Then x1 + x2 + X3 = v'3(1- a), x1x2 + x1x3 + x2x3 = -6a, x1x2x3 = -b. Thus 

and hence lbl ~ Ia + 11 3
. 

7. The lattice frame construction of 2 x 2 x 2 cube is formed with 54 metal shafts of length 
1 (points of shafts' connection are called junctions). An ant starts from some junction A 
and creeps along the shafts in accordance with the following rule: when the ant reaches 
the next junction it turns to a perpendicular shaft. At some moment the ant reaches the 
initial junction A; there is no junction (except for A) where the ant has been twice. What 
is the maximum length of the ant's path? 

Official solution: The maximum length of an ant's path is equal to 24. First we prove that 
the path along which the ant creeps, has at most 24 junctions of the shafts of the cube 
frame. By the condition, any two consecutive shafts in the path (except possibly for the 
first and the last shafts) are perpendicular. In particular, the ant's path passes at most 
one shaft on every edge of the cube. Thus there are at most 12 shafts along the edges of 
the cube. However, each vertex in the path requires two shafts. Thus the path misses at 
least two vertices of the cube. Hence the ant's path passes through at most 25 junctions 
of the shafts. The ant's path consists of an even number of junctions. This is easily seen 
to be true by taking the starting point as the origin and the three mutually perpendicular 
lines passing through it as the axes and assume that each shaft is of unit length. Then 



each move by the ant causes exactly a change of one unit in one of the coordinates. Thus 
the total number of moves is even. Thus the length of the path is at most 24. A path of 
length 24 is shown in the figure. 

8. Is it possible to partition the set of all rational numbers into two disjoint subsets A and 
B so that 

(a) the sum of any two numbers from A, as well the sum of any two numbers from 
B, belongs to A? 

(b) the sum of any two distinct numbers from A, as well as the sum of any two 
distinct numbers from B, belongs to A? 

Official solution: The answer is no for both parts. For part (a), suppose on the contrary, 
that the required partition exists: Q = AU B, where An B = 0, A =/:. 0, B =/:. 0. Let 
x be an arbitrary element of Q. Then we see that x E A, because if x /2 . E A, then 
x/2 + x/2 = x E A, and if x/2 E B, then x/2 + x/2 = x E A. Hence A= Q and B = 0, a 
contradiction. 

(b) Suppose the the required partition exists: Q = AU B, where An B = 0, A =/:. 0, 
B =/:. 0. First we show that B =/:. {0}. Indeed, if B = {0}, then 1 E A, -1 E A, and 
1 + ( -1) = 0 E A which is impossible. If x E Band x =/:. 0, then one of the numbers x/3, 
2x/3 belongs to Band the other belongs to A (if both numbers belong to the same subset, 
then their sum x would belong to A). We have two cases: 

1) x/3 E Band 2x/3 EA. Then x + x/3 = 4x/3 EA. Hence 2x/3 + 4x/3 = 2x EA. 

2) x/3 E A and 2x/3 E B. Then x + 2x/3 = 5x/3 EA. Hence 5x/3 + x/3 = 2x EA. 

Thus 2x E A. Moreover, x/2 E A for if x/2 E B, then 2 · x/2 = x E A, which is a 
contradiction. Finally 4x E A, because 

x/2 E A, 2x E A=> x/2 + 2x = 5x/2 E A 

=> x/2 + 5x/2 = 3x E A 

=> x /2 + 3x = 7 x /2 E A 

=> x/2 + 7x/2 = 4x E A. 



Thus we conclude that if x E Band x =/:. 0, then 4x EA. Next we prove that if x E A, then 
4x EA. There are two cases: 1) 2x E B; 2) 2x EA. If 2x E B, then according to the above 
proof, we have 2 · 2x = 4x E A. If 2x E A,. then 2x + x = 3x E A and 3x + x = 4x E A. 
Thus for any x E Q- { 0}, x /4 is either in A or B. In both case we have x E A. Therefore, 
B = {0} which is impossible. This contradiction proves the required statement. 

Category b 

1. A point B is marked inside a regular hexagon A1A2A3A4A5A6 so that LA2A 1B = 
LA4A3B = 50°. Find LA1A2B. 

Official solution: Each interior angle of the hexagon is 120°. Since LA3BA1 = 360° -
LBA3A2- LBA1A2- LA1A2A3 = 120°, we see that B lies on a circle with centre A2 and 
radius A20, where 0 is the centre of the hexagon. Thus A1A2 = BA2 and LA1A2B = 
180° - LBA1A2 - LA1BA2 = 80°. 

2. Find the product of three distinct real numbers a, b, c if they satisfy the system of 
equations 

a3 = 3b2 + 3c2
- 25, 

b3 = 3c2 + 3a2 
- 25, 

c3 = 3a2 + 3b2 - 25. 

Official solution: Let a, b, c be roots of the polynomial f(x) = x 3
- ax2 + f3x- "'· Then 

ry = abc, f3 = ab + be + ac and a = a + b + c. We have 

a3 + 3a2 = 3(a2 + b2 + c2)- 25 

b3 + 3b2 = 3(a2 + b2 + c2) - 25 

c3 + 3c2 = 3(a2 + b2 + c2)- 25. 

Thus a, b, care roots of the polynomial g(x) = x 3 +3x2 -3(a2 -2/3) +25 since a2 +b2 +c2 = 
a 2 - 2{3. Since a, b and c are distinct, f(x) = g(x). This gives a = -3, f3 = 0 and 
"'= 3(a2 - 2/3)- 25 = 27- 25 = 2, i.e., abc= 2. 

3. "Words" are formed with the letters A and B. Using the words XI, x2, ... , Xn we can 
form a new word if we write these words consecutively one next to another: x1x2 ... Xn· 

A word is called a palindrome, if it is not changed after rewriting its letters in the reverse 



order. Prove that any word with 1995 letters A and B can be formed with less than 800 
palindromes. 

Official solution: (The key idea is to find the longest word that can be formed using at 
most 2 palindromes.) First of all, it is easy to check that any 5-letter word may be formed 
with at most two palindromes. Indeed, (A and Bare symmetric). 

AAAAA = AAAAA, AAAAB = AAAA + B, AAABA = AA +ABA, 
AAABB = AAA + BB, AABAA = AABAA, AABAB = AA + BAB, 
AABBA = A+ ABBA, AABBB = AA +EBB, ABAAA = ABA+ AA, 
ABAAB =A+ BAAB, ABABA= ABABA, ABABB =ABA+ BB, 
ABBAA = ABBA+ A, ABBAB = ABBA+ B, ABBBA = ABBBA, 
ABBBB =A+ BBBB. 

Let us consider an arbitrary word with 1995 letters and divide it into words with 
5 letters each. Each of these 199515 = 399 words may be formed with at most two 
palindromes. Thus any 1995-letter word may be formed with at most 399 x 2 = 798 
palindromes. 

4. Find all functions f, f : lR --+ .IR, satisfying the equality 

f(f(x- y)) = f(x)- f(y) + f(x)f(y)- xy 

for all x andy. 

Solution: The key is to show that f(O) = 0 as in Category a Problem 3. 

5. Let AK, BLand CM be the altitudes of an acute angled triangle ABC. Prove that if 
9AK + 4BL + 7CM = 0, then there is an angle in D..ABC that is equal to 60°. 

Official solution: Define p = IAKI, q = IBLI, r = ICMI. Then D..PQR is similar to 
D..ABC, where 9p = QR, 4q = PR and 7r = PQ. Let a, band c be the lengths of the 
sides of D..ABC. Since p = 2S I a, q = 28 lb and r = 28 I c, where 8 is the area of D..ABC, 
we have 

a2 = 188lk, b2 = 88lk, c2 = 148lk 

where k = 9pla = 4qlb = 7rlc. Then LACE= 60° since by the cosine rule we have 

2 + b2 2 1 
cos LACE= a - c - -

2ab 2 

6. Given three real numbers such that the sum of any two of them is not equal to 1, prove 
that there are two numbers x and y such that xy I ( x + y- 1) does not belong to the interval 
(0, 1). 

Official solution: Let a, b, c be the given numbers. Suppose that each of the numbers 

A_ ab 
-a+b-1' 

B _ ac 
- a+c-1' 

C = be 
b+c-1 

belongs to (0, 1). Then A> 0, B > 0, C > 0 and 

2b2 2 
ABC= a c > 0. 

(a+ b- 1)(a + c- 1)(b + c- 1) 



Hence 
D =(a+ b- 1)(a + c- 1)(b + c- 1) > 0. 

On the other hand, A- 1 < 0, B- 1 < 0, C- 1 < 0. Thus (A- 1)(B- 1){C- 1) < 0. It 
is easy to verify that 

A_ 1 = (a- 1)(b- 1) 
a+b-1 ' 

Consequently, 

B _ 1 = (a- 1)(c- 1), 
a+c-1 

c- 1 = (b- 1)(b- 1). 
b+c-1 

(A- l){B- 1)(C- 1) = (a- 1)2{b- 1)2(c- 1)2 < 0 
(a+ b- 1)(a + c- l){b + c- 1) 

contradicting ( * ). This proves the statement. 

7. Let Q* denote the set of rational numbers, each greater than 1. 

(a) Is it possible to partition Q* into two disjoint sets A and B so that the sum of 
any two numbers from A belongs to A and the sum of any two numbers from B 
belongs to B? 

(b) Is it possible to partition Q* into two disjoint sets A and B so that the product 
of any two numbers from A belongs to A and the product of any two numbers 
from B belongs to B? 

Official solution: (a) If a E A and b E B, then for any m E N, (N denotes the set of 
natural numbers), we have ma E A and mb E B. Let pfq = a E A and r/s = b E B, 
where p,q,r,s EN. Then qra = qrpfq = rp E A, spb = spr/s = rp E B which contradicts 
A n B = 0. Thus it is impossible. 

(b) Define A= {pfqlp,q E N,p > q,gcd(p,q) = l,q odd}, B = Q*- A. It is obvious 
that sets A and B satisfy the problem's condition. Thus the answer is yes. 

8 (a). Each side of an equilateral triangle is divided into 6 equal parts; the points of 
this partition are connected by lines parallel to the sides of triangle. Each vertex of the 
obtained triangular grid is occupied by exactly one beetle. All beetles begin crawling along 
the links of the grid simultaneously with the same speed. The beetles creep according to 
the following rule: when a beetle reaches a vertex of the grid it must turn (to the right or 
to the left) by 60° or 120°. (The beetles do not turn back at any point.) Prove that at 
some moment two beetles meet at a vertex of the grid. 

(b) Would the statement remain true if each side of the triangle is divided into 5 equal 
parts? 

Official solution: Let us mark 10 points as shown the figure. Consider the 10 beetles that 
leave these 10 points after the first move. If after the first move there are no points with 
more than one beetle, then there is exactly one beetle at each point. Therefore, after the 
first move 10 other beetles are at the marked points. After the second move these 10 
beetles will be at the non-marked points. Moreover, no beetle from the set of the first 10 
beetles can come back at the marked points. · Consequently, we see that 20 beetles will be 



at non-marked points simultaneously. But there are exactly 18 non-marked points. This 
proves the required statement. 

Figure 1 Figure 2 

(b) The statement is not true. The beetles' movement is shown in Fig. 2 where they 
crawl along the marked triangles and parallelogram in the clockwise direction. 

Category C 

1. Six distinct numbers n 1, n2, n 3, n 4, n 5, n 6 are given. For each two of these numbers, Bill 
calculates their sum. What is the largest possible number of distinct primes among the 
sums obtained by Bill? 

Solution by Chan Sing Chun: 

If the sum of two distinct numbers is a prime, then one number is odd and the other even. 
Since 6 distinct numbers are given, then the largest possible number of distinct primes 
among the sums of two numbers must come from 3 odd and 3 even numbers, Hence the 
largest possible number of distinct primes among the 15 = (~) different sums is 3 x 3 = 9. If 
the six numbers are 4, 8, 38, 8, 15, 33. Then we can get 9 primes 13, 19, 37, 17, 23, 41, 47, 53, 71. 

5. Let ABbe the diameter of a semicircle. A point M is marked on the semicircle, and a 
point K is marked on AB. A circle with centre P passes through A, M, K and a circle 
with centre Q passes through M, K, B. Prove that M, K, P and Q lie on the same circle. 

Solution by Chan Sing Chun: 

M 

A K B 



-------------------

In the semicircle AM B, LAMB = goo. Let LM AB = (}, LM B A = .X. Then 

(1) 

P is the centre of circumcircle AKM. Therefore LMPK = 2LMAK = 2B. Q is the 
centre of circumcircle MKB. Therefore LMQK = 2LMBK = 2-X. Therefore LMPK + 
LMQK = 2B + 2-X = 180°. Thus M, P, K, Q are concyclic. 

Category d 

4. Given a triangle ABC, let K be the midpoint of side AB and L be a point on AC such 
that AL = LC + C B. Prove that LK LB = goo if and only if AC = 3C B. 

Solution: Chan Sing Chun contributed the first part of the solution. 

B K A 

Let M be the midpoint of AL and CN be an altitude of ll.CBL. Then KMIIBL and 
MK = BL/2. Suppose AC =3GB. Then CL = CB and NL = BL/2 = KM. Thus 
ll.C N L and !::iLK M are congruent and it follows that LK LB = goo. 

Conversely, if LK LB = goo, then LLK M = goo, and consequently, triangles C N L and 
LKM are similar. Let KM =a and LM =b. Then BL = 2a and BC + CL = 2b. Thus 
CL = kb, and NL = ka for some k, whence MC = (2- k)b and BN = (2- k)a. Since 
C N L and C N B are right triangles, we have BC2 - BN2 = C L 2 - N L 2 • This implies that 
k = 1 and AC =3GB. 

5. Two circles touch at a point M and lie inside a rectangle ABC D. It is known that one 
of them touches the sides AB and AD, and the other touches the sides AD, BC and CD. 
The second circle has the radius four times as long as the radius of the first one. Find the 
ratios in which the common tangent of the circles that passes through M divides the sides 
AB and AD. 

Solution by Chan Sing Chun: 



Let the radius of the smaller circle be 1. First we find the dimension of the rectangle 
ABCD. Clearly CD = 8. Since OL = 3 and 001 = 5, we have 0 1L = 4. This 
implies that AD = 1 + 4 + 4 = 9. Let the common tangent at M cut AD at X and 
AB at Y. Then XP = XM = XQ, whence AX = 3 and AX/XD = 3/6 = 1/2. 
Now tanLPX01 = POI/PX = 2. Thus tanLPXM = tan2LPX01 = -4/3. But 
Y AjAX= Y A/3 =- tanLPXM = 4/3. Thus YA = 4 and AY/YB = 4/4 = 1. 

6. Let p and q be distinct positive integers. Prove that at least one of the equations 

x2 + px + q = 0 or x2 + qx + p = 0 

has a real root. 

Solution by Chan Sing Chun: 

Suppose both the equations 

x 2 + px + q = 0, and x 2 + qx + p = 0 

have no real roots. Then 

p2 
- 4q < 0, and q2 

- 4p < 0. 

Thus p4 < 16q2 < 64p, whence p < 4. By symmetry, q < 4. We may also assume that 
p < q. Hence, the only possible pairs of values of (p, q) are (1, 2), (1, 3) and (2, 3). Direct 
checking shows the condition q2 - 4p < 0 always fails. 

Solutions of the 38th International Mathematical Olympiad 

1. In the plane the points with integer coordinates are the vertices of unit squares. The 
squares are coloured alternately black and white (as on a chessboard). For any pair of 
positive integers m and n, consider a right-angled triangle whose vertices have integer 
coordinates and whose legs, of lengths m and n, lie along the edges of the squares. Let S1 
be the total area of the black part of the triangle and S2 be the total area of the white 
part. Let f(m, n) = IS1- S2l· 



[ 

(a) Calculate f ( m, n) for all positive integers m and n which are either both even or 
both odd. 

(b) Prove that f(m,n) ~ ~max{m,n} for all m and n. 

(c) Show that there is no constant C such that f ( m, n) < C for all m and n. 

Official solution: (a) For an arbitrary polygon P, let Sb(P) and Sw(P) denote the total area 
of the white part and the black part, respectively. Let A, B, C, D be the points (0, 0), (0, m), 
(n, 0), (n, m), respectively. When m and n are of the same parity, the colouring of the 
rectangle ABCD is centrally symmetric about its centre. Hence Sw(ABC) = Sw(BCD) 
and Sb(ABC) = Sb(BCD). Thus 

1 
f(m, n) = ISb(ABC)- Sw(ABC)I = 2ISb(ABCD)- Sw(ABCD)I. 

Hence f(m, n) = 0 when both m and n are even and f(m, n) = 1/2 when both m and n 
are odd. 

:a~: 
(b) If m and n are of the same parity the result follows from (a). Now suppose that 

m is odd and n is even. Let L be the point (0, m- 1). Then f(m - 1, n) = 0, i.e. 
Sb(ALC) = Sw(ALC). Thus 

f(m, n) = ISb(ABC)- Sw(ABC)I = ISb(LBC)- Sw(LBC)I 
n 1 

~ Area(LBC) = "2 ~ 2max{m,n}. 

B"""""'"".--,.,.,.,.,..--""'"".--=.--=r-oD 
L~~~~~6=~~p=~ 

(c) As in (b), with m replaced by 2k + 1 and n by 2k, we have 

j(2k + 1, 2k) = ISb(LBC)- Sw(LBC)I. 

The area of LBC is k. Without loss of generality suppose that the hypotenuse LC passes 
through white squares. Then the black part of LBC consists of several triangles BLN2k, 



M2k-1L2k-1N2k-1, ... , M1L 1N11 each of them being similar to BAG. We have LN2k = 
2k/(2k + 1), BL = 1, M2k-1L2k-l = (2k- 1)/2k, M2k-2L2k-2 = (2k- 2)/2k, and so on. 
Thus their total area is 

S (LBC) =! 2k ((2k)2 (2k- 1)2 . . . (2_)2) = 4k + 1_ 
b 2 2k + 1 2k + 2k + + 2k 12 

Hence Sw(LBC) = k- 4~t 1 and f(2k + 1, 2k) = (2k- 1)/6. Thus such a constant C 
cannot exist. 

L 

2. Angle A is the smallest in the triangle ABC. The points Band C divide the circumcircle 
of the triangle into two arcs. Let U be an interior point of the arc between B and C which 
does not contain A. The perpendicular bisectors of AB and AC meet the line AU at V 
and W, respectively. The lines BV and CW meet at T. Show that 

AU=TB+TC. 

Official solution: (Note: The key is to notice that AU= BS as in the solution.) Let the 
line BV meet the circle at the point S. Then BS = AU. Thus we only need to prove 
that TC = TS. Let L.ABS = x and L.V AC = y. Then LACS = x, LV AB = x and 
L.WCA = y. Thus L.BSC = LBAC = x + y. Also LTCS = x + y. Thus TC = TS as 
required. 



3. Let XI, x2, ... , Xn be real numbers satisfying the conditions: 

I xi + X2 +. · · · + Xn I = 1 

and 
n+1 

lxil ::; -
2
- for i = 1, 2, ... , n. 

Show that there exists a permutation YI, Y2, ... , Yn of XI, x2, ... , Xn such that 

n+1 
IYI + 2y2 + ... + nvnl::; -2-. 

Solution (Note: This has something to do with rearrangement inequality. Try to go 
from the smallest to the largest by a series of steps, each of which is of length ::; n + 1.) 
Without loss of generality, let Xt + · · · + Xn = 1 and Xt ::; • • • ::; Xn· For each permutation 
P of the xi's, let S(P) be the corresponding sum. If I is the identity permutation and J 
is the permutation Xn ... X2Xt, then S(I) is the largest and S(J) is the smallest among 
all the sums. Let r = (n + 1)/2. Then S(I) + S(J) = 2r. If one of S(I), S(J) lies 
between -r and r we are done. If not then S(J) < -r and S(I) > r. First note that if 
we have a permutation p: ... XiXj ... where Xi > Xj, and q is the permutation obtained by 
interchanging Xi and x j, then S ( q) - S (p) ::; ( n + 1). We can go from J to I by a sequence 
of such operations, that is interchanging adjacent terms. Thus one of the intermediate 
permutations must have its sum lie between -r and r. 

4. Ann x n matrix (square array) whose entries come from the set S = {1, 2, ... , 2n- 1 }, 
is called a silver matrix if, for each i = 1, 2, ... , n, the ith row and ith column together 
contain all elements of S. Show that 

(a) there is no silver matrix for n = 1997; 

(b) silver matrices exist for infinitely many values of n. 

Solution (Note: Part (a) is by a simple parity argument. The first construction is 
fairly standard. You should learn how to use it. The second construction is tricky and is 
adapted from the idea of Huah Cheng Jiann, Singapore's representative at the IMO.) (a) 
Let A be ann x n silver matrix. For each i = 1, 2, ... , n, let Ai be the set containing all 
the elements which are in the ith row and the ith column, excluding the diagonal element. 
Let x be an element which is not on the diagonal. (Such an element exists because there 
are only n entries on the diagonal but there are 2n- 1 elements.) If x is at the ( i, j)-entry, 
then it is in Ai and Aj, which is called an x-pair. Thus x partitions the sets At, ... , An 

into x-pairs and son must be even. So there is no silver matrix of order 1997. 

(b) First construction: Suppose A is a n x n silver matrix. Construct a 2n x 2n silver matrix 
as follows. Put two copies of A on the diagonal. Then form an n x n Latin square B using 
the symbols 2n to 3n - 1 (each row and each column is a permutation of the symbols.) 
and another, say C, using the symbols 3n to 4n- 1. Use these as the off diagonal blocks. 
(See the matrix below) 

(~ ~) 



The matrix constructed is a 2n x 2n silver matrix. Starting with the 2 x 2 silver matrix one 
can construct silver matrices of order 2n for any natural number n. An n x n Latin square 
can be constructed by putting 1, 2, ... , n in the first row. Each subsequent row is obtained 
by taking the first element of the previous row and put it at the end. The matrices below 
are some examples. 

1 2 4 5 8 9 10 11 
3 1 5 4 9 10 11 8 

n 
2 4 

D 
6 7 1 2 10 11 8 9 

( ~ ~) 1 5 7 6 3 1 11 8 9 10 
-t -t 

7 1 1 1 15 1 2 4 5 
6 3 13 14 15 12 3 1 5 4 

14 15 12 13 6 7 1 2 
15 12 13 14 7 6 3 1 

Second construction: It can be shown that a silver matrix A of order 2n exist for all n. We 
need a few definitions. Define a 2-partition of the set of integers N = {1, 2, ... , 2n} as a 
division of the set into pairwise disjoint 2-element subsets whose union is N. For example 
{{1, 2}, {3, 4 }, {5, 6}} is a 2-partition of {1, 2, ... , 6}. Let aii denote the ( i, j)-entry of A. 
Suppose k is an element which does not appear on the main diagonal of a 2n x 2n matrix. 
Let Xk = {{i,j}: aii = k or aii = k}. Then k E Ai and k E Ai if and only if {i,j} E Xk, 
where Ai is as defined in part (a). Thus k E Ai for all i if and only if Xk is a 2-partition 
of {1, 2, ... , 2n }. If we have (2n- I) 2-partitions of N, Bb ... , B2n-1 which are pairwise 
disjoint, then each pair of distinct integers { i, j} with 1 ~ i, j ~ 2n is in exactly one of the 
Bk 's. A 2n x 2n silver can be constructed as follows: Put 4n- 1 on the diagonal. For each 
k = 1, 2, ... , 2n- 1, put aii = k and aii = k + 2n- 1 if i < j and {i,j} E Bk· Then the 
resulting matrix is a silver matrix of order 2n. 

The desired 2-partitions can be constructed as follows. Consider a regular polygon 
with 2n- 1 sides. Label the vertices as 1, 2, ... , 2n- 1 and the centre of the polygon as 
2n. Let Bk consists of the pair {k, 2n} together with the pairs that are joined by lines 
which are perpendicular to the line joining k to 2n. Then B1, ... , B2n-1 are the desired 
2-partitions. 

2 2 2 

~1 
4-----. 

5 5 5 

For example, when n = 3, we have the 2-partitions B1 - {{1, 6}, {2, 5}, {3, 4}}, 
B2 = {{2,6},{1,3},{4,5}},B3 = {{3,6},{2,4},{1,5}}, B4 = {{4,6},{3,5},{1,2}}, Bs = 
{{5, 6}, {1, 4}, {2, 3}}. The picture above shows B1, B2 and B3. Put al6 = a2s = a34 = 1, 



a61 = as2 = a43 = 6, a26 = a13 = a45 = 2, a52 = a31 = as4 = 7, etc, we obtain the silver 
matrix 

11 4 2- 5 3 1 
9 11 5 3 1 2 
7 10 11 1 4 3 

10 8 6 11 2 4 
8 6 9 7 11 5 
6 7 8 9 10 11 

5. Find all pairs (a, b) of integers, a ~ 1, b ~ 1 that satisfy the equation 

Solution: We need the following Lemma: If a, m, n are positive integers with m and n 
coprime, and am/n is also an integer, then a= kn for some positive integer k. 

Proof of the Lemma: Let am = bn, where b = am/n. Then a and b have same prime 
factors. Let a = p~1 p~2 

••• p~· and b = pt1 p~2 
••• p~·. It is not hard to see that n divides Ci for 

each i thus completing the proof. 

For the solution of the problem, first note that a = 1 if and only if b = 1. So assume 
that both are not 1. Taking log, we have b2 I a = log b I log a = t. Thus b2 = at and b = at, 
whence b2 = a2t =at. Lett= pjq, where p, q are coprime. Since at is an integer, we have 
qla. Moreover, if q = 1, then t is a positive integer and a2t =at cannot hold. Thus q > 1. 

First consider the case q is odd. Since a2P/q is an integer and the pair 2p and q are 
coprime, a1fq is an integer by the Lemma. Also a is a multiple of q. Thus a = (qrk)q, 

where r and k are natural numbers and q, k coprime. Thus a2t = a2P/q = q2rPk2P and 
at = aplq = qqr- 1pkq, whence q2rPk2P = qqr- 1pkq. Since q > 1, we have 2rp = qr- 1. 
This implies 2p < q. If k > 1, then 2p ~ q which leads to a contradiction. Thus k = 1 and 
p = 1. This gives 1 = r(q- 2) and r = 1, q = 3, whence a= 27, b = 3. 

When q is even, a2/q is an integer. Thus a= (qrkt12
, where rand k are natural 

numbers and q, k coprime. Thus a2t = a2P/q = qrPkP and at= apjq = q(qr/2)- 1pkqf2 , 

whence qrPkP = q(qr/2 )- 1pkqf2 . Using the same argument as before, we have p = 1, k = 1, 
q = 4 and r = 1, and the corresponding answer is a= 16, b = 2. 

(Note: The key step is that a2t = at E .Z, i.e., a2P/q = apfq E .Z. Then we can 
conlcude that q divides a and that a is a q power if q is odd and a can be written in the 
form given in the solution.) 

6. For each positive integer n, let f(n) denote the number of ways of representing n as a 
sum of powers of 2 with nonnegative integer exponents. Representations which differ only 
in the ordering of their summands are considered to be the same. For instance, f( 4) = 4, 
because the number 4 can be represented in the following four ways: 

4; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1. 



Prove that, for any integer n 2: 3: 

Official solution: Note that 2 = /(2) ~ f(n) for n 2: 2. Also, in an representation of 2n as 
a power of 2, the number 1 's is always even. If there are 2k 1 's, then the remaining terms, 
when divided by 2, give a representation of n- k. Thus 

f(2n) = 2 + (!(2) + · · · + f(n)) ~ 2 + (n- 1)/(n) 

~ f(n) + (n- 1)/(n) = nf(n), for n = 2, 3, ... 

Consequently, 

/(2n) ~ 2n-l /(2n-1) ~ 2n-12n-2 /(2n-2) 

~ ... ~ 2(n-l)+(n-2)+··-+1 /(2) = 2n(n-1)/2 . 2. 

And since 2(n(n-l)/2 · 2 < 2n
3 
12 for n 2: 3, the upper estimate follows. 

To find the lower estimate we use binary representations of numbers. Let a = 
(ao, a 11 ... ) be a sequence of integers with only a finite number of nonzero terms. De
fine S(a) = a0 2° + a121 + ···. For two sequences a= (a0 ,a1 , .•. ) and {3 = (bo,b1 , ..• ), 

define a+ {3 = (ao + b0 , a1 + b11 ... ). Then S(a + {3) = S(a) + S(f3). For any integer n 
let n = a0 2° + a121 + · · · + ak2k be the binary representation of n, i.e., ai = 0, or 1 for 
i = 1, 2, ... , k. Let bin(n) = (a0 , a1, ... , ak, 0, 0, ... ). Then S(bin(n)) = n. 

Now we are ready to find the lower estimate. We start by proving that 

Let a= (a0 , a1, ... ) be a representation of 2n. We will construct 22n-l different represen
tations of 2n+3. First, the sequence {3(a) = (O,O,a0 ,a11 •.• ) is a representation of 2n+2. 
Let r(x) = (0, x, 0, 0, ... ) + bin(2n+l- 2x) and li(y) = (y, 0, 0, ... ) + bin(2n+l- y), where 
0 ~ x ~ 2n and 0 ~ y ~ 2n+l are both even. Note the first entry of li(y) is always y 
and the first two entries of r(x) are always 0 and x. We have S(r(x)) = S(li(x)) = 2n+l. 
Define F(a,x,y) = {3(a) + r(x) + li(y). Then F(a,x,y) is a representation of 2n+3 . We 
need to show that F(a,x,y) =/:. F(a',x',y') if (a,x,y) =/:. (a',x'y'). To this end, we 
let F(a,x,y) = F(a',x'y'). Then comparing the first entries, we have y = y'. Thus 
{3(a) + r(x) = {3(a') + r(x'). The second entry of the left hand side is always x and that 
of the right hand side is always x'. Thus x = x'. This then implies a = a'. Thus the proof 
is complete. The inequality ( *) then follows readily. 

We now complete the proof by induction. First we assume that for some n > 6 we 
have /(2n) > 2n

2
/

4 . Then 

/(2n+3) 2: 22n-1 /(2n) > 22n-12n2 /4 2: 2(n+3) 2 /4. 

Thus the inequality holds for n + 3 as well. To complete the proof we need to check the 
cases for n = 3, 4, ... , 9. This can be done easily using the fact that f is strictly increasing 
and the details are left to the readers. 


